

>> Kontron Technical Product Specification <<

Kontron IP Network Server NSN2U

Document Revision 1.3

Revision History

Date	Revision Number	Modifications
06/08/2009	1.0	Final document
03/16/2010	1.1	Updated Section 2.1 processor support and Section 13 Regulatory Information
04/19/2010	1.2	Updated Section 8.3.1
10/15/2010	1.3	Updated serial port from COM2 to COM1 throughout the document

Disclaimers

Copyright © 2009 Kontron AG. All rights reserved. All data is for information purposed only and not guaranteed for legal purposes. Information has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Kontron and the Kontron logo and all other trademarks or registered trademarks are the property of their respective owners and are recognized. Specifications are subject to change without notice.

Contents

Re	vision Hi	story	2
1.	Introdu	ction	.11
2.	System	Overview	.12
2.1		Introduction	.12
	2.1.1	Kontron IP Network Server NSN2U	.12
	2.1.2	NSN2U Server Feature Summary	.13
2.2		NSN2U Server External Chassis Features	.16
	2.2.1	Chassis Front Views	.16
	2.2.2	Front Panel	.17
	2.2.3	Hard Drives and Optical Drive	.17
	2.2.4	Chassis Rear View	.19
2.3		NSN2U Server Internal Features	.20
	2.3.1	Intel® T5520UR Server Board (the Baseboard)	.20
	2.3.2	PCI Riser Card Assembly	.20
	2.3.3	Cooling Subsystem	.22
2.4		NSN2U Server Platform Management Subsystem	.24
	2.4.1	IPMI 2.0 Features	.24
	2.4.2	Non IPMI Features	.25
2.5		NSN2U Server Specifications	.25
	2.5.1	Environmental Specifications	.25
	2.5.2	Physical Specifications	.26
3.	Cables	and Connectors	.27
3.1 3.2		Interconnect Block Diagrams Cable and System Interconnect Descriptions	.27 .29
	3.2.1	SAS/SATA Backplane Power Cable	.29
	3.2.2	Flex Circuit Cable	.29
	3.2.3	Bridge Board	.29
	3.2.4	Front Panel Board Power Cable	.30
	3.2.5	LED/Switch Board Power and Signal Cable	.30
	3.2.6	80mm Fan Power and Signal Cable	.31
	3.2.7	60mm Fan Power Cable	.32
	3.2.8	SATA Optical Drive Signal and Power Cable	.33
	3.2.9	Serial Port Cable	.34
3.3		User-Accessible Interconnects	.34
	3.3.1	Keyboard and Mouse Ports	.34
	3.3.2	Serial Port	.34
	3.3.3	Video Port Connector	.35

	3.3.4	Universal Serial Bus (USB) Interface	35
	3.3.5	Ethernet Connector	36
4.	Front P	anel Board	38
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1	0	Introduction Front Panel Board Features Front Panel Board Block Diagram Front Panel Board Functional Description Front Panel Board USB Ports Front Panel Board Serial Port Connector Front Panel Board Serial Port Connector Front Panel Board Fan Controller Front Panel Board Power Interface Front Panel Board USB Flash Drive Connector Front Panel Board Bridge Board Interconnect Front Panel Temperature Sensor	38 39 40 40 40 41 41 41 41 41
4.1	2	Front Panel Board Connector Specifications	41 42
7.1	4 13 1	Power Connector	- 2 42
	4.13.2	Fan Connector	42
	4.13.3	Front Panel Board Connector	44
	4.13.4	Bridge Board Connector	44
	4.13.5	Combo RJ45/USB Connector	47
	4.13.6	Internal USB Flash Connector	48
5.	LED/Sw	vitch Board	49
5.1 5.2		Introduction LED/Switch Board Features	49 49
	5.2.1	Front Panel System Control Buttons	49
	5.2.2	Front Panel Status LEDs	50
5.3		LED/Switch Board Connector Specification	51
6.	SAS/SA	ATA Backplane Board	53
6.1 6.2 6.3 6.4		Introduction SAS/SATA Backplane Board Features Hard Disk Drive Activity and Fault LEDs SAS/SATA Backplane Board Power Connectors	53 53 55 55
	6.4.1	Power Distribution Board Power Connector	56
	6.4.2	Front Panel Board Power Connector	56
6.5		SAS/SATA Backplane Card Edge Finger Connector	56
7.	SAS/SA	ATA Control Module	58
7.1 7.2 7.3 7.4		Introduction SAS/SATA Control Module Features SAS/SATA Control Module Block Diagram SAS/SATA Control Module Functional Description	58 59 59 59
	7.4.1	SAS Features	59
	7.4.2	SATA Features	59
7.5 7.6		SAS/SATA Control Module Flex Cable Connector SAS/SATA Control Module Card Edge	60 60

8.	SAS/SA	TA RAID Module	.62
8.1 8.2		Introduction	.62
8.3		SAS/SATA RAID Module Features	.63
	8.3.1	Hardware RAID Configurations	.63
	8.3.2	PCIe Interface	.63
	8.3.3	Flash	.64
	8.3.4	NVRAM	.64
	8.3.5	DDRII Bus	.64
	8.3.6	Intelligent Battery Backup Unit (IBBU)	.64
	8.3.7	GPIOs	.64
	8.3.8	I-Button	.65
	8.3.9	SMBus	.65
	8.3.10	Battery Backup Power Control	.66
8.4		SAS/SATA RAID Module Buzzer	.66
8.5		SAS/SATA RAID Module Clock Generation/Distribution	.66
	8.5.1	33 MHz System Reference Clock	.67
	8.5.2	150 MHz SAS Clock	.67
	8.5.3	200 MHz Clock	.67
	8.5.4	100 MHz Clock	.67
8.6		SAS/SATA RAID Module Status LEDs	.67
8.8		SAS/SATA RAID Module Reset Connector (J4B1)	.68
8.9	h	SAS/SATA RAID Module Edge Connector (J2D1)	.68
8.10		SAS/SATA RAID Module IBBU Connector (J4L1)	.70
9.	PURIS	er Card Assembly	.71
9.1		Riser Card Options	.71
9.3		Riser Card Mechanical Drawings	.72
10.	DC Pow	/er Subsystem	.76
10.	1	Introduction	.76
10.2	2	DC Power Supply to PDB Interconnect	.77
10.4	4	DC Power Supply Hiput Connector Mating Connector	.77
10.	5	DC Power Supply Output Connector	.78
10.6	5 7	DC Power Supply Output Current Requirements	.78
10.	7 3	DC Power Supply LED Indicator	.79
11.	Power I	Distribution Board (PDB)	.80
11.	1	Introduction	.80
11.2	2	PDB DC Output Specification	81
11.	3	PDB +12V Output Load Requirements	.81 20
11.	- 5	PDB Output Voltage Regulation	.02 .82
11.6	6	PDB Protection Circuits	82

11.7 11.8	PDB PMBus Requirements PDB Output Interface Connectors	83 83
11.8.1	Baseboard Connector Card Edge	83
11.8.2	HDD Backplane Power Connector (FPIO)	84
11.8.3	PDB I/O Power Connector	84
12. AC Po	wer Subsystem	86
12.1 12.2 12.3 12.4 12.5	Introduction AC Power Supply Output Current Requirements AC Power Supply LED Indicator AC Power Supply Air Flow AC Power Supply Thermal Protection	
13. Regula	ntory Specifications	90
13.1 13.2 13.3	Safety Compliance Electromagnetic Compatibility CE Mark	
Appendix A: Glossary		91

List of Figures

Figure 1. Kontron IP Network Server NSN2U (Top Covers On)	12
Figure 2. Kontron IP Network Server NSN2U (Covers and Front Bezel Removed)	13
Figure 3. NSN2U Server Block Diagram	15
Figure 4. Front View of the NSN2U Server (Bezel Installed)	16
Figure 5. Front View of NSN2U Server (Bezel Removed)	16
Figure 6: Front Panel Details	17
Figure 7: Hard Drives and Optical Drive	18
Figure 8: SAS/SATA Hard Drive Tray Assembly	18
Figure 9: Optical Drive Tray Assembly Installation	19
Figure 10: Chassis Rear View	19
Figure 11 T5520UR Server Board	20
Figure 12. Riser Card Assembly	21
Figure 13. Riser Card Configurations	22
Figure 14. Cooling Subsystem	23
Figure 15: NSN2U Server Interconnect Block Diagram	28
Figure 16. SAS/SATA Backplane Power Cable Mechanical Drawing	29
Figure 17. Flex Circuit Cable	29
Figure 18. Bridge Board Mechanical Drawing	30
Figure 19. Front Panel Board Power Cable Mechanical Drawing	30
Figure 20, LED/Switch Board Power and Signal Cable Mechanical Drawing	31
Figure 21. 80mm Fans Power and Signal Cable Mechanical Drawing	32
Figure 22. 60mm Fan Power and Signal Cable Mechanical Drawing	33
Figure 23. SATA Optical Drive Power and Signal Cable Mechanical Drawing	34
Figure 24. Serial Port Cable Mechanical Drawing	34
Figure 25. Serial Port Connector	35
Figure 26. Video Connector	35
Figure 27. USB Connector	36
Figure 28. RJ45 Ethernet Connector	36
Figure 29. NSN2U Server FP Board Layout (Primary Side)	39
Figure 30: NSN2U Server FP Board Block Diagram	40
Figure 31. Power Distribution	42
Figure 32. Front Panel Buttons/LEDs	49
Figure 33. SAS/SATA Backplane Board	53
Figure 34: SAS/SATA Backplane Board Block Diagram	54
Figure 35: Hard Disk Drive Bay Numbering	55
Figure 36: SAS/SATA Control Module	58
Figure 37. SAS/SATA Control Module Block Diagram	59

62
63
66
67
72
73
74
75
77
77
78
78
80
81
83
87
87

List of Tables

Table 1. NSN2U Server Feature List	14
Table 2: Environmental Specifications Summary	25
Table 3. Physical Dimensions (Max)	26
Table 4 System Cables	29
Table 5 RJ45 Ethernet Connector Pin-Out	36
Table 6: NIC Status LED	37
Table 7 Power Connector Pin-Out	42
Table 8 Fan Connector Pin-Out	43
Table 9 Front Panel Board Connector Pin-Out	44
Table 10 Bridge Board Connector Pin-Out	45
Table 11 Combo RJ45 USB Connector Pin-Out	47
Table 12. USB Port Connector Pin-Out	48
Table 13. NSN2U Front Panel Board Internal USB Flash Connector	48
Table 14. Control Button Functions	49
Table 15. Front Panel LED Functions	50
Table 16. System Status LED Description	50
Table 17 LED/Switch Board Connector Pin-Out	51
Table 18. Hard Drive LED Function Definitions	55
Table 19. HDD Activity LED Definitions	55
Table 20: Backplane Power Connector Pin-Out	56
Table 21: Front Panel Board Power and Signal Connector Pin-Out	56
Table 22: SAS/SATA Backplane Board Edge Finger Connector Pin-Out	56
Table 23: SAS/SATA Control Module Flex Cable Connector Pin-Out	60
Table 24. SAS/SATA Control Module 2x49 Card Edge Finger Pin-Out	61
Table 25: GPIO Descriptions	65
Table 26: Clock Generation/Distribution Status LED Functions	68
Table 27: Flex Connector Pin-Out	68
Table 28: Backplane Edge Finger Connector Pin-Out	69
Table 29: IBBU Connector Pin-Out	70
Table 30 Riser Card Configurations	71
Table 31. Output Connector Pin-Out	78
Table 32. DC Power Supply 600W Load Ratings	79
Table 33. LED Indicators	79
Table 34. PDB Input Connector Pin-Out	81
Table 35: PDB +12V Outputs Load Ratings	81
Table 36. PDB D2D Converter Load Ratings	82
Table 37. NSN2U PDB Voltage Regulation Limits	82

Table 38. PDB Card Edge Connector Pin-Out	.84
Table 39. Drive Backplane Power Connector Pin-Out	.84
Table 40. I/O Power Connector Pin-Out	.85
Table 41. AC Output Connector Pin-Out	.87
Table 42. AC Power Supply 600W Load Ratings	.88
Table 43: LED Indicator Status Conditions	.88

1. Introduction

This document provides detailed information about the Kontron IP Network Server NSN2U, including information about the chassis hardware, cables, connectors, system boards, power subsystem, and regulatory requirements.

This document is organized into the following chapters:

Chapter 1:	Introduction Provides an overview of this document	
Chapter 2:	System Overview Provides an overview of the Kontron IP Network Server NSN2U hardware	
Chapter3:	Cables and Connectors Describes the cables and connectors used to interconnect the system board set and the server system components	
Chapter4:	Front Panel Board Describes the specifications of the front panel I/O board	
Chapter 5:	Front Panel LED/Switch Board Describes the specifications of the front panel LED/switch board	
Chapter 6:	SAS/SATA Backplane Board Describes the specifications of the SAS backplane board	
Chapter 7 :	SAS/SATA Control Module Describes the specifications of the SAS/SATA control module	
Chapter 8:	SAS/SATA RAID Module Describes the specifications of the SAS/SATA RAID module	
Chapter 9:	Riser Card Assembly Describes the specifications of the PCI riser card assembly	
Chapter 10:	DC Power Subsystem Describes the specifications of the DC power subsystem	
Chapter 11:	Power Distribution Board (PDB) Describes the specifications of the power distribution board	
Chapter 12:	AC Power Subsystem Describes the specifications of the AC power subsystem	
Chapter 13:	Regulatory Specifications Describes system compliance to regulatory specifications	
Appendix A:	Glossary Provides definition of key terms used in this document	

2. System Overview

This chapter provides an overview of the key features of the Kontron IP Network Server NSN2U in the following sections:

Section 2.1:	Introduction Provides an overview of the server features and a block diagram of the Kontron IP Network Server NSN2U.
Section 2.2:	NSN2U Server External Chassis Features Describes the user-accessible features of the NSN2U server chassis in detail (buttons, switches, bezel, etc.)
Section 2.3:	NSN2U Server Internal Chassis Features Provides an overview of the internal functional components of the NSN2U server
Section 2.4:	NSN2U Server Platform Management Describes the server management features of the NSN2U server
Section 2.5:	NSN2U Server Specifications Summarizes the environmental and physical specifications of the NSN2U server

2.1 Introduction

2.1.1 Kontron IP Network Server NSN2U

The Kontron IP Network Server NSN2U is a compact, high-density, rack-mount server with support for the Intel® Xeon® 5500 and 5600 series processors and up to twelve DDR3 DIMMs. The NSN2U server supports high availability features such as hot-swappable and redundant power supply modules, and up to eight hot swappable 2.5" hard disk drives. The scalable architecture of the NSN2U server supports a variety of operating systems.

Figure 1 shows the NSN2U server completely assembled. Figure 2 shows the NSN2U server with the top covers and the front bezel removed.

Item	Description	Item	Description
А	RJ45 COM1 port and USB port (2 connectors)	Н	Intel server board T5520UR (baseboard)
В	Control panel and status indicators	I	Two CPUs (CPU 1 shown)
С	SAS or SATA hard disk drives (up to eight)	J	Two sets of DDR3 memory DIMMs (CPU 2 DIMM slots shown)
D	Optical drive	к	System fans
E	Power supply cage for two power supply modules	L	Front panel board with optional USB flash
F	Riser card assembly (containing both full-height and low-profile riser cards	М	LED/switch board
G	PCI riser for 3x PCIe, 5x PCIe butterfly, or 2x PCI-X +3x PCIe butterfly		

2.1.2 NSN2U Server Feature Summary

Table 1 lists the features of the NSN2U server.

	Table 1. NSN2U Server Feature List
Feature	Description
	External connections:
	DB-15 video connector (rear)
	RJ45 Serial Port A (COM1) connector (front or rear access)
	Two RJ45 10/100/1000 Mb network connections (rear)
	Four USB 2.0 connectors (rear)
	One USB 2.0 connector (front)
Perinheral Interfaces	Internal connections:
	Two low-profile USB 2x5-pin headers for low-profile USB solid state drives, including the
	Smart Modular Z-U130 Value Solid State Drive. One header is located on the front panel
	board and the other header is on the baseboard.
	One DH-10 serial Port B (COM 2) header
	Six Serial ATA (SATA) II connectors
	Two I/O module connectors
	One RMM3/GCM4 connector for an optional Intel® Remote Management Module 3
	On-board ServerEngines* LLC Pilot II Controller
Video	Integrated 2D Video Controller
	32 MB DDR2 Memory
LAN	Two 10/100/1000 Intel® 82575 PHYs
	Riser card options:
	Three full-height PCI Express* slots (passive)
Expansion Conshilition	Five-slot PCI-X riser:
Expansion Capabilities	Two full-height PCI-X slots with on-board PCI Express to PCI-X bridge chips
	Eivo slot DCL Express sion and two low-profile PCI Express sions
	Three full-height PCI Express slots and two low-profile PCI Express slots
	Un to eight 2 5-inch SAS or SATA hard drives
Hard Drive Options	SAS/SATA RAID drive controller
	SAS/SATA backplane board drive controller
Derinherele	Slimline bay for one slimline SATA optical drive
Peripherais	PCI riser card assembly bracket
	Power on/off
Front Popol Buttons	System reset
FIGHT Faller Buttons	Chassis ID
	NMI
	Power status
	Chassis identification
Front Panel EDs	System status
	Fan status
	HDD activity/fault
	NIC activity
Power Supply	Up to two 600-W power supply modules (AC or DC)
	Four redundant CPU/memory area cooling fans
Fans	Two redundant PCI area cooling fans
	Two optional redundant power supply fans (with PS redundancy configuration only)
	On-board ServerEngines* LLC Pilot II Controller
System Management	Integrated Baseboard Management Controller (Integrated BMC), IPMI 2.0-compliant
	Integrated Super I/O on LPC interface
	Intel® System Management Software 3.1 support

The NSN2U T5520UR server board is mounted horizontally toward the rear of the chassis behind the system fan array.

Up to eight 2.5-inch hot swappable SAS technology hard drives can be mounted in the drive bays, which are accessed from the front of the chassis with the front bezel removed. Figure 2 shows the location of the SAS drive bays.

The Front Panel (FP) board and LED/switch board, which provide the user interface for the system, are located in front of the 80mm CPU fans.

The power supply modules are installed at the rear of the chassis. Up to two hot-swappable 600W power supply modules can be installed for a 1+1 redundant configuration. A filler module for the empty power supply slot is supplied and must be installed for systems without redundancy. The left slot (looking from the front of the system) is the non-redundant power supply module location.

The server contains four 80x38mm and two 60x38mm redundant, hot-swappable fans to cool the T5520UR server board and other components. These fans are installed directly behind the front panel board and in front of the T5520UR server board. The four 80 x 38mm fans are powered and controlled from the 2x12-pin connector located on the front panel (FP) board. The two 60 x 38mm fans are powered and controlled from the 2x8-pin connector located on the FP board. Fan failures are indicated by a fault LED on the fan carrier. Each fan has its own separate carrier.

The front bezel design allows adequate airflow to cool the system components and it can be customized to meet OEM industrial design requirements. The bezel is removed to access the drive carriers in the hard drive bays or to install or remove the optical drive.

Figure 3 shows a block diagram of the NSN2U server I/O subsystems.

Figure 3. NSN2U Server Block Diagram

2.2 NSN2U Server External Chassis Features

2.2.1 Chassis -- Front Views

Figure 4 shows the front of the NSN2U server with the bezel installed. Figure 5 shows the front of the server with the bezel removed. Removing the bezel provides access to the hard drive bays and allows for installing or removing the optical drive assembly.

Figure 4. Front View of the NSN2U Server (Bezel Installed)

ltem	Description	ltem	Description
Α	Optical drive	С	RJ45 COM1 port
В	Front panel control buttons and status indicator LEDs	D	USB port

Figure 5. Front View of NSN2U Server (Bezel Removed)

Kontron IP Network Server NSN2U Technical Product Specification

Item	Description	ltem	Description
Α	ESD ground strap attachment	Н	Hard drive bay 2
в	Optical drive	I	Hard drive bay 3
с	Front panel control buttons and status LEDs	J	Hard drive bay 4
D	RJ45 serial port (COM1/serial A)	К	Hard drive bay 5
Е	USB port	L	Hard drive bay 6
F	Hard drive bay 0	М	Hard drive bay 7
G	Hard drive bay 1		

NOTE: The hard drive bays in Figure 5 show how the server is shipped; bays 0 - 3 have drive carriers installed and bays 4 - 7 contain fillers. Refer to the Kontron NSN2U Configuration Guide for information on ordering additional hard drive carriers.

2.2.2 Front Panel

The front panel features are shown in Figure 6. All front panel switches and status LEDs are located on the LED/switch board. See "Section 5.3 "NSN2U LED/Switch Board Features" for a detailed description of the control switches and status LEDs contained on the front panel.

Figure 6: Front Panel Details

ltem	Description	Item	Description
Α	Power button	Е	HDD activity LED
В	System reset button	F	NIC1/NIC2 activity LED
С	Chassis information LED	G	Chassis ID button
D	Fan status LED	н	NMI button

2.2.3 Hard Drives and Optical Drive

The IP Network Server NSN2U chassis supports up to eight hard drives in the drive bays provided, which are accessible from the front of the chassis. There is also a front-accessible optical drive (Figure 7, A). SAS or SATA 2.5-inch hard disk drives are mounted in removable drive carriers (Figure 7, B) that latch into the drive bay sub-assembly. The SAS or SATA drives installed in the carriers are hot-swappable. The optical drive, which is not hot-swappable, is mounted in a slot above the hard drives.

The front bezel must be removed to access the SAS or SATA drives and to install or replace the optical drive.

2.2.3.1 SAS/SATA Hard Drive Carriers

Each hard drive used in the server must be mounted to a drive carrier (A) using four screws (B) inserted into the sides of the drive as shown in Figure 8.

Figure 8: SAS/SATA Hard Drive Tray Assembly

2.2.3.2 Optical Drive Assembly

The optical drive tray assembly uses a 0.5-inch (12.7mm) slimline optical drive. The drive is installed from the front of the server through the front wall of the chassis with the plastic retainer latch attached, as shown in Figure 9. Removing the drive requires removing the front bezel, depressing the retainer latch, and then sliding the drive forward.

NOTE: The optical drive can be inserted or removed only when the system is powered off.

Figure 9: Optical Drive Tray Assembly Installation

2.2.4 Chassis -- Rear View

Figure 10 shows the rear of the NSN2U Server chassis.

Figure 10: Chassis Rear View

ltem	Description		Description
Α	Two low-profile PCIe add-in cards (or filler panels)	Н	GbE NIC #2 connector
В	Three full-length PCI-X / PCIe add-in cards (or filler panels)	Ι	GbE NIC #1 connector
С	Power supply 2; filler panel shown ¹	J	USB 2 and 3 (#3 on top)
D	D Power supply 1 ¹		USB 0 and 1 (#1 on top)
Е	E Two ground studs (used for DC-input system)		Video connector
F Two personality card slots (for I/O expansion modules) ²		М	RJ45 serial port connector (COM1)
G RMM3 connector ³			
NOTES			-

1: Figure 10 shows the AC configuration. Items C and D can also be configured for DC operation. The filler panel is mandatory in nonredundant configurations.

2: Only one personality card can be installed at any time. These slots can be used for an optional Gbit Ethernet port or an external SAS port. Dual- and four-port 10/100/1000 Ethernet modules use both openings. A four-port external SAS module uses only one opening. If neither option is installed, filler panels occupy these slots.

3. If RMM3 is not used, a filler panel occupies this space

2.3 NSN2U Server Internal Features

2.3.1 Intel® T5520UR Server Board (the Baseboard)

NOTE: See the *Intel*® *S5520UR* Server Board Technical Product Specification on the Kontron website for detailed information about the baseboard used in this server.

Figure 11 T5520UR Server Board

2.3.2 PCI Riser Card Assembly

The PCI riser card assembly houses one of three different PCI riser card options, as defined in Chapter 9, PCI Riser Card Assembly.

One of the three riser cards, along with the appropriate PCI adapter cards, is assembled into the sheet metal housing when the assembly is removed from the chassis, as shown in Figure 13

Figure 12 shows the installation or removal of the riser card assembly. Blue touch points (A) are provided on the top of the assembly for mating the riser card to the baseboard once the assembly has been aligned on the chassis guide pins. Guide forks and a guide hole in the sheet metal tab on the front of the assembly help align the riser assembly with the alignment pins (B). A captive screw secures the riser assembly in the chassis. The hole/tab on the front of the riser card assembly aligns with the guide pin on the baseboard (C).

Figure 12. Riser Card Assembly

Figure 13 shows the configuration options for the riser card assembly.

Figure 13. Riser Card Configurations

2.3.3 Cooling Subsystem

All system components except the power distribution board and power supplies are cooled by a set of fans mounted near the middle of the chassis behind the front panel board, as shown in Figure 14.

Figure 14. Cooling Subsystem

The NSN2U server has redundant six-fan cooling with four 80x38mm fans and two 60x38mm fans. There are three main cooling zones, as shown in Figure 14:

- Zone 1 (blue) contains fans 1 and 2, which cool CPU1 and all the components in this zone.
- Zone 2 (green) contains fans 3 and 4, which cool CPU2, low-profile PCI cards, and all the other components in this zone.
- Zone 3 (red) contains fans 5 and 6, which cool full-height/length PCI cards and all the other components in this area.

A fourth zone is cooled by the power supply fans. This zone contains the SAS RAID and SAS/SATA boards. Cooling redundancy in this zone is only achieved when two power supplies are installed.

Air flows through the front bezel, over the system components, and exhausts through the rear of the chassis, as illustrated by the arrows in Figure 14. A plastic air duct directs air over the CPUs and memory area of the baseboard, i.e., cooling zones 1 and 2. The riser card, its sheet metal bracket, a plastic air duct between the fans and PCI subassembly, and the power supply cage form the air duct for the PCI area cooling zone 3. The power supply cage and the internal 60mm fans form the air duct for the SAS RAID & SAS/SATA controller boards, power distribution board and power supplies, i.e., cooling zone 4. Each fan provides tachometer signal output to the T5520UR server board to indicate the fan speed and to provide a method for fan failure detection.

2.3.3.1 Ambient Temperature Control

The T5520UR server board contains three separate pulse-width-modulation (PWM) circuit domains that control the speed of the six system fans. PWM fan speed control enables quiet system operation when the ambient temperature is low and there are no fan failures. Domain 0 controls fans 1 and 2, domain 1 controls fans 3 and 4, and domain 2 controls fans 5 and 6.

2.3.3.2 Cooling Summary

The four-fan cooling subsystem is sized to provide cooling for:

- Up to two processors
- 96 Gbytes of DDR3 DIMM memory
- Eight hard drives
- Five PCI cards

The cooling subsystem meets acoustic and thermal requirements at the lower fan speed settings. At the higher fan speed settings, thermal requirements are met for the maximum ambient temperatures, but acoustic requirements are not met. The environmental specifications are summarized in Section 2.5.1.

2.4 NSN2U Server Platform Management Subsystem

Refer to the *Intel® S5520UR Server Board Technical Product Specification* for a detailed description of the Platform Management design and features.

The platform management subsystem is based on the Integrated Baseboard Management Controller (BMC) features of the ServerEngines* Pilot II. The on-board platform management subsystem consists of communication buses, sensors, system BIOS, and server management firmware.

The platform management system supports standard IPMI features as well as other features not part of IPMI.

2.4.1 IPMI 2.0 Features

The IPMI features are:

- Integrated Baseboard Management Controller (Integrated BMC)
- IPMI Watchdog timer
- Messaging support, including command bridging and user/session support
- Chassis device functionality, including power/reset control and BIOS boot flags support
- Event receiver device: the Integrated BMC receives and processes events from other platform subsystems
- Field replaceable unit (FRU) inventory device functionality: the Integrated BMC supports access to system FRU devices using IPMI FRU commands
- System event log (SEL) device functionality: the Integrated BMC supports and provides access to a SEL
- Sensor device record (SDR) repository device functionality: The Integrated BMC supports storage and access of system SDRs
- Sensor device and sensor scanning/monitoring: the Integrated BMC provides IPMI management of sensors by polling sensors to monitor and report system health
- IPMI interfaces
- Host interfaces include system management software (SMS) with receive message queue support, and server management mode (SMM)
- Terminal mode serial interface
- IPMB interface
- LAN interface supporting the IPMI-over-LAN protocol (RMCP, RMCP+)
- Serial-over-LAN (SOL)
- Advanced Configuration and Power Interface (ACPI) state synchronization: the Integrated BMC tracks ACPI state changes provided by the BIOS
- Integrated Baseboard Management Controller (Integrated BMC) self test: the Integrated BMC performs initialization and run-time self tests, and makes results available to external entities. (For more information, see the IPMI 2.0 Specification.)

2.4.2 Non IPMI Features

The Integrated BMC also supports the following non-IPMI features.

NOTE: This list does not preclude support for future enhancements or additions.

- In-circuit Integrated BMC firmware update.
- Fault resilient booting (FRB): FRB2 is supported by the watchdog timer functionality
- Chassis intrusion detection and chassis intrusion cable presence detection (rear cover only).
- Basic fan control using TControl version 2 SDRs
- Fan redundancy monitoring and support
- Power supply redundancy monitoring and support
- Hot-swap fan support
- Acoustic management: support for multiple fan profiles
- Signal testing support: test commands for setting and getting platform signal states
- Diagnostic beep codes: the Integrated BMC generates diagnostic beep codes for fault conditions
- System GUID storage and retrieval
- Front panel management: the Integrated BMC controls the system status LED and chassis ID LED. It supports secure lockout of certain front panel functionality and monitors button presses. The chassis ID LED is turned on using a front panel button or a command.
- Power state retention
- Power fault analysis
- Intel[®] Light-Guided Diagnostics
- Power unit management: support for power unit sensor. The Integrated BMC handles powergood dropout conditions.
- DIMM temperature monitoring: new sensors and improved acoustic management using a closed-loop fan control algorithm that takes into account DIMM temperature readings
- Address Resolution Protocol (ARP): the Integrated BMC sends and responds to ARPs (supported on embedded NICs)
- Dynamic Host Configuration Protocol (DHCP): the Integrated BMC performs DHCP (supported on embedded NICs)
- Chassis intrusion fan interactions
- Platform environment control interface (PECI) thermal management support

2.5 NSN2U Server Specifications

This section lists the environmental and physical specifications for the NSN2U server.

2.5.1 Environmental Specifications

The NSN2U server is designed and tested to meet the environmental specifications in Table 2

Environment	Specification
Temperature, operating	10° C to 35° C (50° F to 95° F)
Temperature, non-operating	-40° C to 70° C (-40 F to 158° F)
Humidity, non-operating	95%, non-condensing at temperatures of 23°C (73°F) to 40°C (104°F)
Altitude	0 to 900m (0 to 2953 ft) @ 35C max. The max ambient limit is derated by 1°C for each additional 300m above 900m.
Vibration, non-operating	Random profile: as per Intel® 25-GS0009 Boards and Systems Environmental Standards Governing Spec 5Hz @ 0.001g ² /Hz to 20Hz @ 0.01g ² /Hz (slope up) 20Hz to 500Hz @ 0.01g ² /Hz (flat)

Table 2: Environmental Specifications Summary

Environment	Specification
	Input acceleration is 2.20g RMS
	10 min. per axis, in all 3 axes, on all samples
	Random control limit tolerance in +/- 3dB
Shock operating	Half-sine 2G, 11 ms pulse, 100 pulses in each direction, on each of the three axes, as per the 25-GS0009 Boards and Systems Environmental Standards Governing Spec
Shock non-operating	Trapezoidal, 25G, 205 inches/sec delta V, two drops in per face, (total 12 drops), as per the 25-GS0009 Boards and Systems Environmental Standards Governing Spec
Electrostatic discharge (ESD)	Tested ESD levels up to 12kV (kilovolts) air discharge and up to 8kV contact discharge without physical damage, as per the 25-GS0009 Boards and Systems Environmental Standards Governing Spec
Acoustic	Sound power: 7B max at ambient temperatures < 23 +/-2°C measured as per the 25-GS0009 Boards and Systems Environmental Standards Governing Spec
RoHS	Complies with RoHS Directive 2002/95/EC and RoHS 6/6

2.5.2 Physical Specifications

Table 3 describes the physical specifications of the NSN2U system.

Table 3. Physical Dimensions (Max)

Height	3.45 inches (87.6 mm)
Width	17.14 inches (435.3 mm)
Depth	24 inches (610 mm)
Front clearance	2 inches (76 mm)
Side clearance	1 inch (25 mm)
Rear clearance	3.6 inches (92 mm)

3. Cables and Connectors

This chapter describes interconnections among the various components of the Kontron IP Network Server NSN2U It provides overview diagrams as well as tables describing the signals and pin-outs for the system connectors. Refer to the *Intel*[®] *Server Board T5520UR Technical Product Specification* or the board sections of this manual for connector signal descriptions and pin-outs not listed in this section.

The information contained in this chapter is organized into three sections:

Section 3.1:	Interconnect Block Diagram Provides an overview of system interconnects
Section 3.2:	Cable and System Interconnect Descriptions Provides a list of all the connectors and cables in the system
Section 3.3:	User-Accessible Interconnects Describes the form-factor and pin-out for user-accessible interconnects

3.1 Interconnect Block Diagrams

Figure 15 shows all of the system level cabled interconnections. Each cable is identified and defined in Table 4.

Figure 15: NSN2U Server Interconnect Block Diagram

Cable Number and Name	End 1 Connection	End 2 Connection
1: SAS/SATA Backplane Power	Power distribution board	SAS/SATA backplane
2: Flex Circuit	SAS/SATA RAID module	Bridge board
3: Bridge Board	Baseboard	Front panel board
4: Front Panel Board Power	SAS/SATA backplane	Front panel Board
5: LED/Switch Board Power and Signal	Front panel board	LED/switch board
6: 80mm Fan Power and Signal	Front panel board	Ganged cable to 4 fans
7: 60mm Fan Power and Signal	Front panel board	Ganged cable to 2 fans
8: SATA Optical Drive Power and Signal	SAS/SATA backplane / baseboard	SATA optical drive
9: Serial Port (COM1)	Bridge board	Baseboard

Table 4 System Cables

3.2 Cable and System Interconnect Descriptions

3.2.1 SAS/SATA Backplane Power Cable

The SAS/SATA backplane power cable interconnects the power distribution board and the SAS/SATA backplane for power only. The physical details of this cable are shown in Figure 16.

Figure 16. SAS/SATA Backplane Power Cable Mechanical Drawing

3.2.2 Flex Circuit Cable

The flex circuit cable is an impedance-controlled flexible circuit that interconnects the SAS/SATA control module or SAS/SATA RAID module to the bridge board to provide the SAS/SATA signal path between the HDDs and the baseboard. Figure 17 shows the flex circuit cable connectors.

Figure 17. Flex Circuit Cable

3.2.3 Bridge Board

The bridge board interconnects the front panel board to the baseboard to pass fan tach and drive signals to/from the baseboard to the front panel. Figure 18 shows the physical details of the bridge board.

3.2.4 Front Panel Board Power Cable

The Front Panel (FP) board power cable interconnects the HDD backplane board with the FP board. The physical details of the front panel board power cable are shown in Figure 19.

3.2.5 LED/Switch Board Power and Signal Cable

The LED/switch board power and signal cable connects the LED/switch board to the front panel board. Figure 20 shows the physical details of the LED/switch board cable.

Figure 20, LED/Switch Board Power and Signal Cable Mechanical Drawing

3.2.6 80mm Fan Power and Signal Cable

The 80mm fan power cable connects the CPU cooling fans to the front panel board. The physical details of the 80mm fan cable are shown Figure 21.

Figure 21. 80mm Fans Power and Signal Cable Mechanical Drawing

3.2.7 60mm Fan Power Cable

The 60mm fan power cable connects the PCI cooling fans to the front panel board. The physical details of the 60mm fan cable are shown in Figure 22.

Figure 22. 60mm Fan Power and Signal Cable Mechanical Drawing

3.2.8 SATA Optical Drive Signal and Power Cable

The SATA optical drive power and signal cable connects the optical drive to the baseboard (signals) and to the HDD backplane board (power).

Figure 23. SATA Optical Drive Power and Signal Cable Mechanical Drawing

3.2.9 Serial Port Cable

The serial port cable provides the interconnection between the user-accessible RJ45 serial port connector on the front panel board and the baseboard. The physical details of the serial port cable are shown in Figure 24.

Figure 24. Serial Port Cable Mechanical Drawing

3.3 User-Accessible Interconnects

3.3.1 Keyboard and Mouse Ports

The keyboard and mouse connect to two of the four USB ports on the rear panel. Refer to Section 3.3.4 for the signal pin definitions for the USB ports.

3.3.2 Serial Port

Two serial ports with 8-pin RJ-45 connectors are provided; one on the front panel and one at the rear I/O. Each port connects to COM1. Connections can be made to either the front or the rear port, but never both. The front port is described in the front panel board chapter, Section 4.5, Front Panel Board USB Ports.

Figure 25. Serial Port Connector

Pin	Signal
1	RTS (request to send)
2	DTR (data terminal ready)
3	TXD (transmit data)
4	GND
5	RIA (ring indicator)
6	RXD (receive data)
7	DSR/DCD (date set ready / data carrier detect
8	CTS (clear to send)

3.3.3 Video Port Connector

The video port interface is a standard VGA-compatible, 15-pin connector. Video is supplied by an onboard ServerEngines* video controller with 32 Mbytes of on-board video DDR2 SDRAM.

5 0 0 0 0 0 0 0 6 15 0 0 1 AF000839		
Pin	Signal	
1	Red (analog color signal R)	
2	Green (analog color signal G)	
3	Blue (analog color signal B)	
4	No connection	
5	GND	
6	GND	
7	GND	
8	GND	
9	Fused VCC (+5 V)	
10	GND	
11	No connection	
12	DDCDAT	
13	HSYNC (horizontal sync)	
14	VSYNC (vertical sync)	
15	DDCCLK	

Figure 26. Video Connector

3.3.4 Universal Serial Bus (USB) Interface

The NSN2U server provides five externally accessible USB ports. Four ports are provided in the rear of the system and the one on the front panel is accessible without removing the front bezel The built-

in USB ports permit the direct connection of five (one front, four rear) USB peripherals without an external hub. If more devices are required, an external hub can be connected to any of the user accessible built-in ports. There are also two internal USB ports that can be used for embedded flash drives.

Figure 27. USB Connector

Pin	Signal	
1	Fused VCC (+5 V w/over-current monitor of ports 0, 1, 2, and 3)	
2	DATAL0 (differential data line paired with DATAH0)	
3	DATAH0 (differential data line paired with DATAL0)	
4	GND	
5	GND	
6	GND	

3.3.5 Ethernet Connector

The T5520UR server board provides two NIC RJ45 connectors oriented side-by-side on the back edge of the board and accessible at the rear I/O panel. The pin-outs for each connector are identical and defined in Table 5.

Figure 28. RJ45 Ethernet Connector

Pin	Signal Name	Description
1	BI_DA+	Bi-directional pair A, +
2	BI_DA-	Bi-directional pair A, -
3	BI_DB+	Bi-directional pair B, +
4	BI_DC+	Bi-directional pair C, +
5	BI_DC-	Bi-directional pair C, -
6	BI_DB-	Bi-directional pair B, -
7	BI_DD+	Bi-directional pair D, +
8	BI_DD-	Bi-directional pair D, -

Table 5 RJ45 Ethernet Connector Pin-Out

Each network interface controller (NIC) drives two LEDs located on the RJ45 connector. The link / activity LED (at the right of the connector) indicates network connection when on, and transmit / receive activity when blinking. The speed LED (at the left of the connector) indicates 1000-Mbps operation when amber, 100-Mbps operation when green, and 10-Mbps when off. Table 6 defines the LEDs.
LED Color	LED State	NIC State
Green/Amber (Left)	Off	10Mbps
	Green	100 Mbps
	Amber	1000 Mbps
Green (Right)	On	Active Connection
	Blinking	Transmit / Receive activity

Table 6: NIC Status LED

4. Front Panel Board

This chapter provides an overview of the Kontron IP Network Server NSN2U Front Panel (FP) board and includes information on board hardware, connectors, power subsystem, optional add-ins, and regulatory requirements. This chapter is organized into the following sections:

Section 4.1:	Introduction Provides an overview of the NSN2U server FP board and shows the functional blocks
Section 4.2:	Front Panel Board Features Describes the NSN2U FP functional blocks
Section 4.3:	Front Panel Board Block Diagram Describes additional functions not described in the Functional Description section.
Section 4.4	Front Panel Board Functional Description Provides a high-level description of the functionality distributed among the architectural blocks of the FP board
Section 4.5	Front Panel Board USB Ports Provides a description of the USB ports available on the front panel board
Section 4.6	Front Panel Board Serial Port Connector Defines the external serial port connection on the front panel board
Section 4.7	Front Panel Board Fan Controller Defines the interface to the system fans provided by the front panel board
Section 4.8	Front Panel Board Power Interface Defines the power connection from the power distribution board to the front panel board and the power distribution to the other system boards
Section 4.9	Front Panel Board USB Flash Drive Connector Defines the optional USB flash drive connection on the board
Section 4.10	Front Panel Board Bridge Board Interconnect Describes the connections provided by the bridge board from the baseboard to the front panel board.
Section 4.11	Front Panel Board Temperature Sensor Describes the on-board temperature sensor
Section 4.12	Front Panel Board Power Distribution Defines the power interface to the front panel board and the power distribution to the circuits on the board
Section 4.13	Front Panel Board Connector Specifications Provides detailed descriptions and the connector pin-out for each of the front panel board connectors

4.1 Introduction

The NSN2U server Front Panel (FP) board provides a connector interface and supporting logic for the Front Panel LED/switch board, which contains power, reset, and system ID switches, as well as various status LEDs. The FP board provides support for an external combined connector supporting both a USB and a serial (RJ45) connector, internal fan connectors, as well as an internal USB header for internal USB flash drive support. Most signals pass from the front panel interface off the baseboard directly to the appropriate device (switch, LED, etc).

Figure 29 shows the FP board components.

Figure 29. NSN2U Server FP Board Layout (Primary Side)

Item	Description	Item	Description
Α	60mm fan cable connector	Е	Front panel input power cable connector
в	Internal USB flash drive connector	F	LED/switch board power/signal cable connector
С	Reserved for future use	G	LED/switch board
D	80mm fan cable connector	н	Bridge board connector

4.2 Front Panel Board Features

The FP Board provides the following feature set:

- Three USB ports used for the USB flash drive connector, the combo RJ45 and USB connector, and a connector reserved for future use
- Serial RS-232 signals
- Control circuitry for driving the NIC activity LED, the system status LED, the power LED and the disk activity LED, all located on the LED/switch board
- Control circuitry for driving a composite fan fault LED to the LED/switch board
- On-board LED indicating USB flash drive activity
- System power state and status indicators -- power, reset, and NMI switches

NOTE: There may be features (for future use) in addition to this list.

4.3 Front Panel Board Block Diagram

Figure 30 is a block diagram that shows the major hardware components and interconnections on the front panel board.

Figure 30: NSN2U Server FP Board Block Diagram

4.4 Front Panel Board Functional Description

This section provides a high-level description of the functions handled by the architectural blocks on the FP board.

4.5 Front Panel Board USB Ports

There are three USB channels on the NSN2U server FP board. One is used by the Smart Modular Z-U130 Value Solid State Drive, the second is reserved for future use, and the third is used as an external USB port accessible through the combo RJ45/USB connector on the front of the chassis.

The FP board provides the P5V power to the external USB connector and over current monitoring for the external USB port.

The reserved USB connection uses a Wieson* G2122C888-003H 5-pin connector. This connector is depopulated and intended only for future use.

4.6 Front Panel Board Serial Port Connector

A serial port connector (COM1) is provided on the front panel via the combo RJ45/USB connector. This serial port connector is cabled from the T5520UR baseboard to the bridge board and then routed to the front panel board. The baseboard provides the functionality for the serial port.

This serial port requires a special cable to enable the port from the baseboard. The cable must provide a ground to connector pin 5 to enable the serial port to the front panel connector.

NOTE: If the front panel serial cable is installed, the rear serial port is deactivated. Both ports cannot be used at the same time.

4.7 Front Panel Board Fan Controller

The front panel board provides two connectors and interface logic for the six system fans. The connectors provide P12V power for the fans as well as connections for the Pulse Width Modulation (PWM) fan speed control, and fan tachometer monitoring (FanTach). In addition, because the fans are hot-swappable, each connector contains a "fan present" signal and a "fan fault" LED signal.

All of the fan control and monitoring signals other than power are available via the bridge board connector interface from the baseboard. Fan management and control is handled on the baseboard and the front panel board just passes the signals through to the fans.

4.8 Front Panel Board Power Interface

DC power to the front panel (FP) board is provided by a 12-pin connector that is cabled to the front panel board from the HDD backplane board.

The FP board is a pass-through power source for

- the system fans
- the front panel LED/switch board

4.9 Front Panel Board USB Flash Drive Connector

This connection is between the baseboard and the front panel board. The baseboard connector is covered in the Intel® T5520UR baseboard specification. The FP board connector is a small, low-profile blind-mate connector that allows USB signals to pass to the USB-to-flash controller on the device itself.

4.10 Front Panel Board Bridge Board Interconnect

The bridge board is an interconnect board that provides the electrical signals to operate the switches and indicators, PCIe, USB, and other signals between the FP board and the baseboard. It also carries serial signals from the serial port cable.

4.11 Front PanelTemperature Sensor

An LM75BIMX-3 digital temperature sensor and thermal watchdog provides temperature sensing. The SMBus address is 0x9Ah.

4.12 Front Panel Board Power Distribution

The power distribution for the front panel board is shown in Figure 31.

Figure 31. Power Distribution

4.13 Front Panel Board Connector Specifications

The following sections provide the pin definitions for the FP board connectors.

4.13.1 Power Connector

Pin	Signal Name	Description
1	GND	Power Supply Ground
2	GND	Power Supply Ground
3	GND	Power Supply Ground
4	GND	Power Supply Ground
5	P5V	Power Supply 5V
6	P5V	Power Supply 5V
7	P5V_STBY	Power Supply 5V Standby
8	P3V3	Power Supply 3.3V
9	P12V	Power Supply 12V
10	P12V	Power Supply 12V
11	P12V	Power Supply 12V
12	P12V	Power Supply 12V

Table 7 Power Connector Pin-Out

4.13.2 Fan Connector

The fan connector signals are defined in Table 8. Fans 1 through 6 share PWM signals in each of the three groups, as shown in the signal definition.

Pin	Signal Name	Description
1	P12V	Power Supply 12V
2	GND	Power Supply Ground
3	FAN_PRSNT1_N	Present Signal
4	FAN_FAULT_LED1	Fan Fault Signal
5	FAN_TACH1_IN	Fan Tach Signal
6	FAN_CONN_PWM1	Fan PWM Signal from FAN_PWM1 of bridge board
7	P12V	Power Supply 12V
8	GND	Power Supply Ground
9	FAN_PRSNT2_N	Present Signal
10	FAN_FAULT_LED2	Fan Fault Signal
11	FAN_TACH2_IN	Fan Tach Signal
12	FAN_CONN_PWM2	Fan PWM Signal from FAN_PWM1 of bridge board
13	P12V	Power Supply 12V
14	GND	Power Supply Ground
15	FAN_PRSNT3_N	Present Signal
16	FAN_FAULT_LED3	Fan Fault Signal
17	FAN_TACH3_IN	Fan Tach Signal
18	FAN_CONN_PWM3	Fan PWM Signal from FAN_PWM2 of bridge board
19	P12V	Power Supply 12V
20	GND	Power Supply Ground
21	FAN_PRSNT4_N	Present Signal
22	FAN_FAULT_LED4	Fan Fault Signal
23	FAN_TACH4_IN	Fan Tach Signal
24	FAN_CONN_PWM4	Fan PWM Signal from FAN_PWM2 of bridge board
25	P12V	Power Supply 12V
26	GND	Power Supply Ground
27	FAN_PRSNT5_N	Present Signal
28	FAN_FAULT_LED5	Fan Fault Signal
29	FAN_TACH9_IN	Fan Tach Signal
30	FAN_CONN_PWM5	Fan PWM Signal from FAN_PWM3 of bridge board
31	P12V	Power Supply 12V
32	GND	Power Supply Ground
33	FAN_PRSNT6_N	Present Signal
34	FAN_FAULT_LED6	Fan Fault Signal
35	FAN_TACH10_IN	Fan Tach Signal
36	FAN_CONN_PWM6	Fan PWM Signal from FAN_PWM3 of bridge board

Table 8 Fan Connector Pin-Out

4.13.3 Front Panel Board Connector

Pin	Signal Name	Description
1	P5VSTBY	Power Supply 5V standby
3	P5VSTBY	Power Supply 5V standby
5	FP_PWR_LED1_N	Power LED 1 Signal
7	FP_PWR_LED2_N	Power LED 2 Signal
9	FP_ID_LED_W_N	System ID White LED signal
11	FP_ID_LED_B_N	System ID Blue LED signal
13	FP_STAT_LED_G_N	Status Green LED signal
15	FP_STAT_LED_A_N	Status Amber LED signal
17	FP_NIC_LED_N	NIC Activity LED signal
19	FP_HDD_LED_G_N	Hard disk Activity LED signal
21	FP_HDD_LED_A_N	Hard disk Fault LED signal
23	FP_BB_LED_A_N	Baseboard Fault LED signal
25	FP_PS_LED_A_N	Power Supply Fault LED signal
27	FP_FAN_LED_A_N	Fan Fault LED signal
29	NC	No connect
2	GND	Power Supply Ground
4	GND	Power Supply Ground
6	TELCO_PWR_LED_N	Telco Power LED signal
8	TELCO_MIN_LED_N	Telco Minor LED signal
10	TELCO_MAJ_LED_R_N	Telco Major Red LED signal
12	TELCO_MAJ_LED_Y_N	Telco Major Yellow LED signal
14	TELCO_CRIT_LED_R_N	Telco Critical Red LED signal
16	TELCO_CRIT_LED_Y_N	Telco Critical Yellow LED signal
18	FP_PWR_BTN_N	Power switch signal
20	FP_RST_BTN_N	Reset switch signal
22	FP_ID_BTN_N	ID switch signal
24	FP_NMI_BTN_N	NMI switch signal
26	P5V	Power Supply 5V
28	GND	Ground
30	NC	No connect

Table 9 Front Panel Board Connector Pin-Out

4.13.4 Bridge Board Connector

The bridge board connector provides all of the interface signals from the T5520UR baseboard to the front panel board.

Pin	Signal Name	Description
A60	NC_FP_CONN_A60	No Connect
A59	NC_FP_CONN_A59	No Connect
A58	FP_PRESENT_N	Pull down to ground with 1K ohm resistor.
A57	GND	Ground
A56	NC_FP_CONN_A56	No Connect
A55	NC_FP_CONN_A55	No Connect
A54	GND	Ground
A53	FAN_PRSNT6_N	Connect to fan connector Molex 87831-3628
A52	GND	Ground
A51	NC_FP_CONN_A51	No Connect
A50	NC_FP_CONN_A50	No Connect
A49	GND	Ground
A48	FAN_PRSNT4_N	Connect to fan connector Molex 87831-3628
A47	GND	Ground
A46	EMP DCD L	Connect to ADM561
A45	EMP_SIN	Connect to ADM561
A44	GND	Ground
A43	EMP SOUT	Connect to ADM561
A42	GND	Ground
A41	EMP DTR N	Connect to ADM561
A40	EMP INUSE L	Connect to ADM561
A39	GND	Ground
A38	FAN PRSNT1 N	Connect to fan connector Molex 87831-3628
A37	FAN PRSNT3 N	Connect to fan connector Molex 87831-3628
A36	FAN PRSNT2 N	Connect to fan connector Molex 87831-3628
A35	GND	Ground
A34	USB1_ESB_DP	Connect to future USB connector
A33	USB1_ESB_DN	Connect to future USB connector
A32	GND	Ground
A31	USB1_ESB_OC_N	Connect to future USB connector over current sensor
A30	USB0_ESB_OC_N	Connect to external USB port over current sensor
A29	GND	Ground
A28	USB0_ESB_DP	Connect to external USB port
A27	USB0_ESB_DN	Connect to external USB port
A26	GND	Ground
A25	FP_NMI_BTN_N	Connect to front panel connector NMI push button
A24	BMC_RST_BTN_N	Connect to front panel connector reset push button
A23	FP_PWR_BTN_N	Connect to front panel connector power button
A22	FP_ID_SW_L	Connect to front panel connector ID push button
A21	GND	Ground
A20	NC_FP_CONN_A20	No Connect
A19	NC_FP_CONN_A19	No Connect
A18	GND	Ground
A17	BB_HDD_ACT_LED_G_N	Connect to front panel connector hard disk activity LED
A16	LED_HDD_3V_A	Connect to 0 ohm resistor and then to power supply 3.3V
A15	FP_PWR_LED_R_N	Connect to front panel connector power supply LED
A14	FP_PWR_LED_3VSB	Connect to 0 ohm resistor and then to power supply 3.3V Standby

Table 10 Bridge Board Connector Pin-Out

Kontron IP Network Server NSN2U Technical Product Specification

Pin	Signal Name	Description
A13	FP_ID_LED_R1_N	Connect to front panel connector ID LED
A12	FM_SIO_TEMP_SENSOR	No Connect
A11	FAN_FAULT_LED3	Connect to fan connector Molex 87831-3628
A10	FAN_FAULT_LED2	Connect to fan connector Molex 87831-3628
A9	FAN_FAULT_LED1	Connect to fan connector Molex 87831-3628
A8	FAN_PWM1	Connect to FAN_CONN_PWM1 and FAN_CONN_PWM2 with appropriate buffer
A7	GND	Ground
A6	FAN_PWM2	Connect to FAN_CONN_PWM3 and FAN_CONN_PWM4 with appropriate buffer
A5	FAN_TACH9_IN	Connect to fan connector Molex 87831-3628
A4	FAN_TACH7_IN	No Connect
A3	FAN_TACH5_IN	No Connect
A2	FAN_TACH3_IN	Connect to fan connector Molex 87831-3628
A1	FAN_TACH1_IN	Connect to fan connector Molex 87831-3628
B60	GND	Ground
B59	NC_FP_CONN_B59	No Connect
B58	NC_FP_CONN_B58	No Connect
B57	GND	Ground
B56	PE_WAKE_N	No Connect
B55	GND	Ground
B54	NC_FP_CONN_B54	No Connect
B53	NC_FP_CONN_B53	No Connect
B52	GND	Ground
B51	FAN_PRSNT5_N	Connect to fan connector Molex 87831-3628
B50	GND	Ground
B49	NC_FP_CONN_B49	No Connect
B48	NC_FP_CONN_B48	No Connect
B47	GND	Ground
B46	NC_RST_PS_PWRGD	No Connect
B45	GND	Ground
B44	EMP_DSR_N	Connect to ADM211
B43	EMP_RTS_N	Connect to ADM211
B42	GND	Ground
B41	EMP_CTS_N	Connect to ADM211
B40	GND	Ground
B39	NC_FP_CONN_B39	No Connect
B38	NC_FP_CONN_B38	No Connect
B37	GND	Ground
B36	NC_FP_CONN_B36	No Connect
B35	NC_FP_CONN_B35	No Connect
B34	NC_FP_CONN_B34	No Connect
B33	NC_FP_CONN_B33	No Connect
B32	GND	Ground
B31	USB2_ESB_DP	Connect to USB Flash Drive Connector
B30	USB2_ESB_DN	Connect to USB Flash Drive Connector
B29	GND	Ground
B28	USB2_ESB_OC_N	Connect to USB Flash Drive Connector over current sensor
B27	LED_NIC1_LINK_N	No Connect
B26	LED_NIC1_ACT_N	Connect to ORing diode

Pin	Signal Name	Description
B25	LED_STATUS_GREEN_BUF_R1	Connect to front panel connector
B24	LED_NIC2_LINK_N	No Connect
B23	LED_NIC2_ACT_N	Connect to ORing diode
B22	LED_STATUS_AMBER_R1	Connect to front panel connector
B21	GND	Ground
B20	SMB_SEN_3V3SB_DAT	SMBus 3.3V data signal. Connect to FRU EEPROM
B19	SMB_SEN_3V3SB_CLK	SMBus 3.3V clock signal. Connect to FRU EEPROM SMBus clock signal
B18	GND	Ground
B17	SAS_LED_HDD_ACT_N	Connect to SAS Hard Disk Fault LED
B16	SAS_LED_HDD_FLT_N	Connect to SAS Hard Disk Activity LED
B15	GND	Ground
B14	NC_FP_CONN_B14	No Connect
B13	NC_FP_CONN_B13	No Connect
B12	NC_FP_CONN_B12	No Connect
B11	GND	Ground
B10	FAN_FAULT_LED6	Connect to fan connector Molex 87831-36xx
B9	FAN_FAULT_LED5	Connect to fan connector Molex 87831-36xx
B8	FAN_FAULT_LED4	Connect to fan connector Molex 87831-36xx
B7	FAN_PWM3	Connect to FAN_CONN_PWM5 and FAN_CONN_PWM6 with appropriate buffer
B6	GND	Ground
B5	FAN_TACH10_IN	Connect to fan connector Molex 87831-3628
B4	FAN_TACH8_IN	No Connect
B3	FAN_TACH6_IN	No Connect
B2	FAN_TACH4_IN	Connect to fan connector Molex 87831-3628
B1	FAN_TACH2_IN	Connect to fan connector Molex 87831-3628

4.13.5 Combo RJ45/USB Connector

Table 11 shows the pin definitions for the serial port (SP) on the combo RJ45/USB connector

RJ45 Pin	SP Pin	Signal Name	Description
NA	12	NC	No Connect
NA	4	NC	No Connect
NA	6	NC	No Connect
NA	1	NC	No Connect
NA	7	NC	No Connect
1	11	RJ45_EMP_RTS_L	Connect to ADM561
2	10	RJ45_EMP_DTR_L	Connect to ADM561
3	4	RJ45_EMP_SOUT	Connect to ADM561
4	5	GND	Ground
5	3	RJ45_EMP_INUSE_L	Connect to ADM561
6	2	RJ45_EMP_SIN	Connect to ADM561
7	8	RJ45_EMP_DSR_DCD_L	Connect to ADM561
8	9	RJ45_EMP_CTS_L	Connect to ADM561

Table 11 Combo RJ45 USB Connector Pin-Out

Pin	Signal Name	Description
1	USB_GND	Connect to ferrite bead and filtered cap
2	USB0_DP	Connect to protection diode and choke
3	USB0_DN	Connect to protection diode and choke
4	USB_PWR	Connect to ferrite bead

Table 12. USB Port Connector Pin-Out

4.13.6 Internal USB Flash Connector

The internal USB header is a Samtec* 10-pin connector, LTMM-105-01-S-D-02 that connects to the Smart Modular Z-U130 Value Solid State Drive.

Table 13. NSN2U Front Panel Board Internal USB Flash Connector

Pin	Signal Name	Description
1	P5V	Power Supply 5V
2	NC	No connect
3	USB2_ESB_DN	USB signal
4	NC	No connect
5	USB2_ESB_DP	USB signal
6	NC	No connect
7	GND	Power Supply Ground
8	NC	No connect
9	NC	No connect
10	ACT_LED_N	Tie to green LED for USB activity indication

5. LED/Switch Board

This chapter provides an overview of the Kontron IP Network Server NSN2U LED/switch board, including information about the board hardware, connectors, power subsystem, optional add-ins, and regulatory requirements.

This chapter is organized into the following sections:

Section 5.1	Introduction Provides an overview and mechanical image of the LED/switch board
Section 5.2	LED/Switch Board Features Describes the LED/switch board feature set
Section 5.3	LED/Switch Board Connector Specification Provides the connector and pin-out information for the LED/switch board components

5.1 Introduction

The NSN2U LED/switch board provides input selection switches and LED status indicators for the server system. Figure 32 shows the front panel LED/switch panel layout.

Figure 32. Front Panel Buttons/LEDs

5.2 LED/Switch Board Features

The front panel LED/switch board has the following features:

- Connects the front panel board signals and the front panel. There are four switches and six LEDs. The power status LED and the chassis ID LED are embedded in the switch and the other four are shown in Figure 32
- On board switches for power, reset, ID, and NMI
- On board LEDs to indicate power status, chassis ID, system status, HDD activity/fault, NIC activity, and fan status.

5.2.1 Front Panel System Control Buttons

The LED/switch board houses a system control button for each of the four switches. The function of each is listed in Table 14

Table 14. Control Button Functions

Switch/Button	Feature	Function
А	Power / Sleep button	Toggles the system power on/off, also functions as a sleep button if enabled by an ACPI-compliant operating system. A status LED is embedded in this switch and displayed on the button
В	Reset Button	Reboots and initializes the system
G	Chassis ID Button	Toggles the front panel chassis ID LED and the rear server board chassis ID LED on/off. The front panel LED is embedded in the switch and displayed on the button.
Н	NMI Button	Puts the system in a halt state for diagnostic purposes and allows issuance of a non-maskable interrupt when pressed. After issuing the interrupt, a memory download can be performed to determine the cause of the problem. NOTE: This button is for diagnostic purposes only and can only be accessed by using a thin stylus or a paper clip.

5.2.2 Front Panel Status LEDs

The front panel LED/switch board contains six status LEDs; four separate and two embedded and displayed with their buttons. The functions of each are listed in Table 15.

LED Description	LED Power	Color	Condition	Description
Power/Sleep	P5V	Green	On	Legacy power on / ACPI S0 state
(on bullon)		Green	Blinking	Sleep / ACPI S1 state
		-	Off	Power off / ACPI S4 or S5 state
Chassis Identification	P5VSTBY	Blue	On	Chassis identification active via command or button
(on button)			Off	Chassis identification inactive
System Status	P5VSTBY	Green	On	System ready/normal operation
(see Table 16)		Green	Blinking	System ready but degraded
	P5VSTBY	Amber	On	Critical or non-recoverable condition
		Amber	Blinking	Non-critical alarm
		-	OFF	System not ready: POST/system stop
HDD ¹	P5V	Green	BLINK	Hard disk drive activity
	P5V	Amber	ON	Hard disk drive fault
			OFF	No access and no hard disk drive fault
NIC1/NIC2 Activity	P5V	Green	ON	LAN link for NIC1 and NIC2
		Green	BLINK	LAN activity for NIC1 and NIC2
		-	OFF	Idle / No link
Fan Status	P5VSTBY	Amber	ON	Fan fault
		-	OFF	Fan subsystem OK - no fault

Table 15. Front Panel LED Functions

NOTE^{: 1}For detailed information about the HDD LED settings, see Section 6.3 "Hard Disk Drive Activity and Fault LEDs".

5.2.2.1.1 System Status LED

Table 16 describes the meaning of each state on the system status LED.

Table 16. System Status LED Description

Color	State	Criticality	Description

Off	N/A	Not ready	AC (or DC if DC power supplies used) power is off.	
Green	On	OK	System booted and ready	
Green	Blinking	Degraded	System booted did reddy System degraded Including, but not limited to: Unable to use all of the installed memory (more than one DIMM installed) Correctable errors over a threshold of 10 and migrating to a spare DIMM (memory sparing). This indicates that the user no longer has spare DIMMs specifying a redundancy lost condition. The corresponding DIMM LED should light up. In a mirrored configuration, when memory mirroring takes place and system loses memory redundancy (This is not covered by the second bullet above) Redundancy loss, such as power supply or fan (This does not apply to non- redundant subsystems) PCI Express* link errors CPU failure/disabled – if there are two processors and one of them fails Fan alarm – Fan failure. Number of operational fans should be more than the minimum number needed to cool the system Non-critical threshold crossed – temperature and/or voltage	
Amber	Blinking	Non-critical	 Non-fatal alarm – system is likely to fail Including, but not limited to: Critical voltage threshold crossed VRD hot asserted Minimum number of fans to cool the system are not present or have failed In non-sparing and non-mirroring mode if the threshold of ten correctable errors is crossed within the window 	
Amber	On	Critical, non- recoverable	 Fatal alarm – system has failed or shut down Including, but not limited to: DIMM failure when there is one DIMM and no good memory present Run-time memory uncorrectable error in non-redundant mode IERR signal asserted Processor 1 missing Temperature (e.g., CPU ThermTrip, memory TempHi, critical threshold crossed) No power good – power fault Processor configuration error (e.g., processor stepping mismatch) 	

5.2.2.1.2 Chassis Identification LED

The blue chassis identification LED is used to help identify a system for servicing. This is especially useful when the system is installed in a high-density rack or cabinet with several similar systems.

The blue chassis ID LED can be turned on by:

- Pressing the chassis ID button on the front panel, The chassis ID LED remains blue until the button is pressed again.
- Issuing the appropriate hex IPMI system identify value, The chassis ID LED either blinks blue for 15 seconds and turns off or blinks indefinitely until the appropriate hex IPMI system identify value is issued to turn it off.

5.3 LED/Switch Board Connector Specification

The LED/switch board has a 2x15-pin connector to the front panel (FP) board. The connector pin definitions are shown in Table 17:

Table 17 LED/Switch Board Connector Pin-Out

Kontron IP Network Server NSN2U Technical Product Specification

Pin	Definition	Pin	Definition
1	P5VSTBY	16	TELCO_CRIT_LED_Y_N
2	GND	17	FP_NIC_LED_N
3	P5VSTBY	18	FP_PWR_BTN_N
4	GND	19	FP_HDD_LED_G_N
5	FP_PWR_LED1_N	20	FP_RST_BTN_N
6	TELCO_PWR_LED_N	21	FP_HDD_LED_A_N
7	FP_PWR_LED2_N	22	FP_ID_BTN_N
8	TELCO_MIN_LED_N	23	FP_BB_LED_A_N
9	FP_ID_LED_W_N	24	FP_NMI_BTN_N
10	TELCO_MAJ_LED_R_N	25	FP_PS_LED_A_N
11	FP_ID_LED_B_N	26	P5V
12	TELCO_MAJ_LED_Y_N	27	FP_FAN_LED_A_N
13	FP_STAT_LED_G_N	28	GND
14	TELCO_CRIT_LED_R_N	29	NC
15	FP_STAT_LED_A_N	30	NC

6. SAS/SATA Backplane Board

This chapter describes the features of the Kontron IP Network Server NSN2U SAS/SATA backplane board. The chapter is organized into the following sections:

Section 6.1 Introduction Section 6.2 SAS/SATA Backplane Board Features Section 6.3 Hard Disk Drive Activity and Fault LEDs Section 6.4 SAS/SATA Backplane Board Power Connectors Section 6.5 SAS/SATA Backplane Card Edge Finger Connector

6.1 Introduction

The NSN2U server contains a single SAS/SATA backplane board that provides support for eight 2.5" SAS or SATA hard disk drives (HDDs) and one slimline optical drive. The backplane interconnects with either a SAS/SATA module or a SAS RAID module to support eight SAS or SATA drives via a 2x49-pin card edge connector. This interface contains eight SAS or SATA HDD signals, control signals, and SMBus signals.

The backplane board only provides power for the slimline optical drive. The SAS signal interface from the slimline optical drive to the Intel® Server Board T5520UR is through a 7-pin SAS/SATA signal cable. DC power (12V, 5V, and 3.3V) to the backplane is provided from the power distribution board (PDB) through a 12-pin (2x6) connector.

Fault and activity LEDs are provided for each of the eight HDD positions. Composite fault and activity LED signals for all eight drives are sent to the front panel board to drive the front panel drive activity/fault LED. Figure 33 shows the SAS/SATA backplane.

Figure 33. SAS/SATA Backplane Board

6.2 SAS/SATA Backplane Board Features

The backplane board contains the following features:

- SAS/SATA connectors for eight hot-swappable disk drives
- Enclosure management via an embedded controller
- Serial EEPROM for hot swap controller firmware for the embedded controller
- Control circuitry for driving the disk drive activity and fault LED.
- Control circuitry for driving a composite disk drive fault and activity LED
- Digital temperature sensor

Figure 34 is an overall block diagram of the SAS/SATA backplane board.

Figure 34: SAS/SATA Backplane Board Block Diagram

There are two main sections:

Power Distribution: The main supply rails are P12V and P5V, which come from the PDB through a 2X6 power connector, as specified in Figure 34 They are connected directly to all eight HDDs. However, the 12V rail goes through an isolation circuit before reaching another 2x6-pin connector that goes to the front panel board. The 5V rail, besides powering up the HDDs and front panel, also powers up the optical drive through a 1x4 SMT connector.

Storage Management: The storage management controller coordinates the hard disk drive fault LED indicators.

Figure 35 shows the physical ordering of the hard disk drives.

Figure 35: Hard Disk Drive Bay Numbering

6.3 Hard Disk Drive Activity and Fault LEDs

The backplane board supports an activity/fault LED for each of the hard drive connections. The LED is green for activity or amber for a drive fault. The green activity setting is driven by the SAS/SATA HDD directly. The amber fault LED is driven by the enclosure management controller whenever a fault condition is detected.

NOTE: When drives are used in a RAID configuration, the RAID controller manages the fault LED and it may exhibit different behavior.

Status LED	Definition	
Green	HDD activity	
Amber	HDD fault	

Table 18. Hard Drive LED Function Definitions

The activity LED is controlled directly by the hard drives and the behavior is different between SAS and SATA drives. Table 19 shows the expected behavior for each condition. However, the ready signal states can be defined differently by SAS drive vendors, and for SATA drives, the ready signal is optional and the function of this signal varies among the SATA drive vendors.

Table 19. HDD Activity LED Definitions

Condition	Drive Type	Behavior
Power on with no drive activity	SAS	Ready LED stays on
	SATA	Ready LED stays off
Power on with drive activity	SAS	Ready LED blinks off when processing a command
	SATA	Ready LED blinks on when processing a command
Power on and drive powered	SAS	Ready LED stays off
down	SATA	Ready LED stays off
Power on and drive starting	SAS	Ready LED blinks
ир	SATA	Ready LED stays off

6.4 SAS/SATA Backplane Board Power Connectors

There are two power connectors on the backplane board: one that connects to the power distribution board and one that connects to the front panel board.

6.4.1 Power Distribution Board Power Connector

The pin definitions and power rating of the P5V, P12V, P5V_STBY, P3V3 and GND rails coming from the Power Distribution Board (PDB) through a 2X6-pin power connector are shown in Table 20.

Pin #	Definition	Pin #	Definition
1	P5V	7	P5V
2	P5V_STBY	8	P3V3
3	P12V4	9	P12V4
4	P12V4	10	GND
5	GND	11	GND
6	GND	12	GND

Table 20: Backplane Power Connector Pin-Out

6.4.2 Front Panel Board Power Connector

Table 21 shows the pin definitions for the 2x6-pin power connector between the SAS/SATA backplane board and the front panel board.

Pin	Signal Name	Definition	Pin	Signal Name	Definition
1	GND	Power Supply Ground	7	P5V_STBY	Power Supply 5V Standby
2	GND	Power Supply Ground	8	P3V3	Power Supply 3.3V
3	GND	Power Supply Ground	9	P12V	Power Supply 12V
4	GND	Power Supply Ground	10	P12V	Power Supply 12V
5	P5V	Power Supply 5V	11	P12V	Power Supply 12V
6	P5V	Power Supply 5V	12	P12V	Power Supply 12V

Table 21: Front Panel Board Power and Signal Connector Pin-Out

6.5 SAS/SATA Backplane Card Edge Finger Connector

The main connector on the backplane connects with either the SAS/SATA control module or the SAS RAID module. Table 22 shows the pin definitions for the connector.

Table 22: SAS/SATA Backplane Board Edge Finger Connector Pin-Out

Pin #	Definition	Pin #	Definition
A1	SGPIO_CLOCK	B1	P12V
A2	SGPIO_LOAD	B2	P12V
A3	P3V3	В3	P5V
A4	SGPIO_DATAOUT0	B4	P5V
A5	SGPIO_DATAOUT1	B5	P5V
A6	P5V_STBY	B6	P5V
A7	LED_HDD_FLT_L	B7	RSVD_B7
A8	LED_HDD_ACT_L	B8	RSVD_B8
A9	SMB_SAS_3V3_SCL	B9	GND
A10	SMB_SAS_3V3_SDA	B10	SMB_IPMB_5VSB_CLK
A11	RST_PS_PWRGD	B11	SMB_IPMB_5VSB_DAT

A12	GND	B12	GND
A13	RSVD_A13	B13	GND
A14	GND	B14	SAS4_TX_P
A15	GND	B15	SAS4_TX_N
A16	SAS4_RX_P	B16	GND
A17	SAS4_RX_N	B17	GND
A18	GND	B18	SAS5_TX_P
A19	GND	B19	SAS5_TX_N
A20	SAS5_RX_P	B20	GND
A21	SAS5_RX_N	B21	GND
A22	GND	B22	SAS6_TX_P
A23	GND	B23	SAS6_TX_N
A24	SAS6_RX_P	B24	GND
A25	SAS6_RX_N	B25	GND
A26	GND	B26	SAS7_TX_P
A27	GND	B27	SAS7_TX_N
A28	SAS7_RX_P	B28	GND
A29	SAS7_RX_N	B29	GND
A30	GND	B30	SAS0_TX_P
A31	GND	B31	SAS0_TX_N
A32	SAS0_RX_P	B32	GND
A33	SAS0_RX_N	B33	GND
A34	GND	B34	SAS1_TX_P
A35	GND	B35	SAS1_TX_N
A36	SAS1_RX_P	B36	GND
A37	SAS1_RX_N	B37	GND
A38	GND	B38	SAS2_TX_P
A39	GND	B39	SAS2_TX_N
A40	SAS2_RX_P	B40	GND
A41	SAS2_RX_N	B41	GND
A42	GND	B42	SAS3_TX_P
A43	GND	B43	SAS3_TX_N
A44	SAS3_RX_P	B44	GND
A45	SAS3_RX_N	B45	GND
A46	GND	B46	RSVD_B46
A47	RSVD_A47	B47	RSVD_B47
A48	RSVD_A48	B48	RSVD_B48
A49	GND	B49	GND

7. SAS/SATA Control Module

This chapter provides an overview of Kontron IP Network Server NSN2U SAS/SATA control module, including information about the module hardware, connectors, power subsystem, optional add-ins, and regulatory requirements.

This chapter is organized into the following sections:

Section 7.1:	Introduction Provides an overview of the NSN2U server SAS/SATA control module
Section 7.2:	SAS/SATA Control Module Features Describes the NSN2U SAS/SATA control module features
Section 7.3:	SAS/SATA Control Module Block Diagram Provides a block diagram of the SAS/SATA control module
Section 7.4:	SAS/SATA Control Module Functional Description Provides a high-level description of the functionality of the SAS/SATA control module architectural blocks
Section 7.5:	SAS/SATA Control Module Connector Pin Definitions Defines the pin-out of the module connector
Section 7.6:	SAS/SATA Control Module Flex Cable Pin Definitions Defines the pin-out of the flex cable
Section 3.8:	SAS/SATA Control Module Card Edge Pin Definitions Defines the pin-out of the card edge finger connection

7.1 Introduction

The NSN2U server SAS/SATA control module adds SAS/SATA support for the server. The module interfaces to the baseboard through a PCI Express bus and provides integrated software RAID 0/1/10 capability. Figure 36 shows the placement of the major components and connectors on the SAS/SATA control module.

Figure 36: SAS/SATA Control Module

7.2 SAS/SATA Control Module Features

The SAS/SATA control module provides the following features:

- Differential SAS/SATA signals from an LSI Logic LSISAS1068E* SAS/SATA controller (Figure 36, "B") to the server HDD backplane through an edge finger connector Supports 3.0 Gbps throughput for up to eight ports
- Differential PCIe x4 (Gen1) signals from the server bridge board through a flex cable connector (Figure 36, "A") to the SAS/SATA controller

7.3 SAS/SATA Control Module Block Diagram

Figure 37 is a system block diagram of the SAS/SATA control module.

Figure 37. SAS/SATA Control Module Block Diagram

7.4 SAS/SATA Control Module Functional Description

This section provides a high-level description of the architectural blocks of the SAS/SATA control module. Figure 37 provides the block diagram. The following subsections discuss features covered in the block diagram.

7.4.1 SAS Features

This section describes the control module features common to both SAS and SATA options:

- Provides eight fully independent SAS PHYs
- Supports SAS data transfers of 3.0 Gbps and 1.5 Gbps
- Provides a serial, point-to-point, enterprise-level storage interface
- Simplifies cabling among devices

7.4.2 SATA Features

This section describes the SATA features.

- Provides eight fully independent SATA PHYs
- Supports SATA data transfers of 3.0 Gbps and 1.5 Gbps

- Supports STP data transfers of 3.0 Gbps and 1.5 Gbps
- Provides a serial, point-to-point enterprise-level storage interface
- Simplifies cabling among devices

7.5 SAS/SATA Control Module Flex Cable Connector

The SAS/SATA control module has a flex cable connector with PCI Express x4 signals through the connector to the LSISAS1068E controller. The pin definitions are covered in Table 23.

Pin #	Definition	Pin #	Definition
1	SMB_HOST_3V3_CLK	31	GND
2	FLEX_PRESENT1	32	EXP_SB_0P
3	SMB_HOST_3V3_DAT	33	EXP_NB_0P
4	GND	34	GND
5	GND	35	EXP_NB_0N
6	EXP_SB_3N	36	GND
7	GND	37	GND
8	EXP_SB_3P	38	CK_100M_SAS_EXP_DN
9	EXP_NB_3P	39	GND
10	GND	40	CK_100M_SAS_EXP_DP
11	EXP_NB_3N	41	NC_SGPIO_DATAOUT0
12	GND	42	GND
13	GND	43	BBU_KEY_PRSNT
14	EXP_SB_2N	44	GND
15	GND	45	SMB_IPMB_5VSB_DAT
16	EXP_SB_2P	46	NC_PE_WAKE_N
17	EXP_NB_2P	47	SMB_IPMB_5VSB_CLK
18	GND	48	RST_PS_PWRGD
19	EXP_NB_2N	49	GND
20	GND	50	NC_SW_RAID_MODE
21	GND	51	NC_SGPIO_DATAOUT1
22	EXP_SB_1N	52	GND
23	GND	53	SMB_SEN_3V3SB_CLK
24	EXP_SB_1P	54	NC_SGPIO_CLOCK
25	EXP_NB_1P	55	SMB_SEN_3V3SB_DAT
26	GND	56	NC_SGPIO_LOAD
27	EXP_NB_1N	57	LED_HDD_FLT_R_L
28	GND	58	LED_HDD_ACT_R_L
29	GND	59	FLEX_PRESENT2
30	EXP_SB_0N	60	GND

Table 23: SAS/SATA Control Module Flex Cable Connector Pin-Out

7.6 SAS/SATA Control Module Card Edge

The SAS/SATA module has a 2x49-pin edge finger for the SAS/SATA backplane. Pin definitions are listed in Table 24.

Pin#	Pin Definition	Pin#	Pin Definition
A1	SGPIO_CLOCK	B1	P12V
A2	SGPIO_LOAD	B2	P12V
A3	P3V3	B3	P5V
A4	SGPIO_DATAOUT0	B4	P5V
A5	SGPIO_DATAOUT1	B5	P5V
A6	NC_RSVD_A6 ¹	B6	P5V
A7	LED_HDD_FLT_L	B7	RSVD_B7
A8	LED_HDD_ACT_L	B8	RSVD_B8
A9	SMB_SAS_3V3_SCL	B9	GND
A10	SMB_SAS_3V3_SDA	B10	SMB_IPMB_5VSB_CLK
A11	RST_PS_PWRGD	B11	SMB_IPMB_5VSB_DAT
A12	GND	B12	GND
A13	RSVD_A13	B13	GND
A14	GND	B14	SAS4_TX_P
A15	GND	B15	SAS4_TX_N
A16	SAS4_RX_P	B16	GND
A17	SAS4_RX_N	B17	GND
A18	GND	B18	SAS5_TX_P
A19	GND	B19	SAS5_TX_N
A20	SAS5_RX_P	B20	GND
A21	SAS5_RX_N	B21	GND
A22	GND	B22	SAS6_TX_P
A23	GND	B23	SAS6_TX_N
A24	SAS6_RX_P	B24	GND
A25	SAS6_RX_N	B25	GND
A26	GND	B26	SAS7_TX_P
A27	GND	B27	SAS7_TX_N
A28	SAS7_RX_P	B28	GND
A29	SAS7_RX_N	B29	GND
A30	GND	B30	SAS0_TX_P
A31	GND	B31	SAS0_TX_N
A32	SAS0_RX_P	B32	GND
A33	SAS0_RX_N	B33	GND
A34	GND	B34	SAS1_TX_P
A35	GND	B35	SAS1_TX_N
A36	SAS1_RX_P	B36	GND
A37	SAS1_RX_N	B37	GND
A38	GND	B38	SAS2_TX_P
A39	GND	B39	SAS2_TX_N
A40	SAS2_RX_P	B40	GND
A41	SAS2_RX_N	B41	GND
A42	GND	B42	SAS3_TX_P
A43	GND	B43	SAS3_TX_N
A44	SAS3_RX_P	B44	GND
A45	SAS3_RX_N	B54	GND
A46	GND	B46	RSVD_B46
A47	RSVD_A47	B47	RSVD_B47
A48	RSVD_A48	B48	RSVD_B48
A49	GND	B49	GND

Table 24. SAS/SATA Control Module 2x49 Card Edge Finger Pin-Out

¹P5V_STBY is not used in the SAS/SATA control module.

8. SAS/SATA RAID Module

This chapter describes the features of the Kontron IP Network Server NSN2U SAS/SATA RAID module. This chapter is organized into the following sections:

Section 8.1:	Introduction
Section 8.2:	SAS/SATA RAID Module Features
Section 8.3:	SAS/SATA RAID Module Functional Blocks
Section 8.4:	SAS/SATA RAID Module Buzzer
Section 8.5:	SAS/SATA RAID Module Clock Generation/Distribution
Section 8.6:	SAS/SATA RAID Module Status LEDs
Section 8.7:	SAS/SATA RAID Module Reset Control
Section 8.8:	SAS/SATA RAID Module Flex Connector (J4B1)
Section 8.9:	SAS/SATA RAID Module Backplane Edge Finger Connector (J2D1)
Section 8.10:	SAS/SATA RAID Module Intelligent Battery Backup Unit Connector (J4L1)

8.1 Introduction

This chapter provides an overview of the features of the NSN2U server SAS RAID module that shows how the SAS RAID module interconnects with the other components of the NSN2U server. Figure 38 shows the SAS RAID module.

Figure 38: SAS/SATA RAID Module Major Components

8.2 SAS/SATA RAID Module Features

The SAS/SATA RAID module provides the internal SAS/SATA RAID functionality for the NSN2U server using an LSI Logic LSISAS1078* hardware RAID controller (Figure 38, "B") The controller interface to the system is through a PCIe bus flex cable connection (Figure 38, "A"). The SAS/SATA

RAID module provides a cost-effective and performance-optimized configurable hardware RAID controller for the NSN2U server.

The block diagram in Figure 39 shows the major hardware components of the SAS RAID module on the NSN2U.

Figure 39: SAS/SATA RAID Module Block Diagram

The following sections use the block diagram in Figure 39 to provide a more detailed description of each of the functional blocks.

8.3 SAS/SATA Hardware RAID Module Functional Blocks

The hardware RAID controller, along with associated LSI Logic* firmware, provides the major functions of the SAS/SATA hardware RAID module. The controller interface to the system is through the PCIe bus

8.3.1 Hardware RAID Configurations

The hardware RAID controller provides support for hardware RAID levels 0, 1, 10, 5 and 6. The controller provides virtual disk arrays for the system to use. These disk arrays can be in any of the supported RAID modes. The on board DDRII memory provides 256 Mbytes of cache support. The cache support can speed up transaction timing, depending on the cache configuration.

8.3.2 PCIe Interface

The hardware RAID controller interconnects with the T5520UR baseboard through a 4-lane PCIe interface.

8.3.3 Flash

A 32-Mbit flash holds the hardware RAID controller executable code. The code in this flash configures the LSI 1078 RAID controller to fully support the hardware RAID functions.

8.3.4 NVRAM

The NVRAM is 256 Kbits of accessible static RAM. The NVRAM is used to store hardware RAID controller configuration information and disk drive RAID configuration information.

8.3.5 DDRII Bus

The SAS/SATA RAID module DDRII bus runs at speeds up to 667 MHz and supports 256 Mbytes of registered DDRII memory. The memory is integrated onto the board, so there are no user-replaceable DIMMs.

8.3.6 Intelligent Battery Backup Unit (IBBU)

The battery backup preserves the contents of the DIMM if power drops below specifications. VBAT_RAID is the 1.8V used by the DDRII memory and is supplied by P1V8, P3V3_STBY, or the Intel® RAID Smart Battery (battery backup module). Under normal operation, full power (P1V8) is applied to VBAT_RAID and is generated from 5V to 1.8V by a separate PWM controlled switching regulator. If this rail drops out, VBAT_RAID is powered from the server power supply standby rail (P3V3_STBY) through an SC1565 LDO regulator. If P3V3_STBY_PWRGD is de-asserted, the RAID smart battery takes over as the VBAT_RAID source (assuming cache data is present in DDRII memory).

When the hardware RAID controller senses power has dropped below 2.96V ('Power Good' deasserts) and its POWER_DELAY signal is asserted, it initiates a power fail sequence that safely puts the ROMB DIMM into a self-refresh state. The POWER_DELAY circuit generates enough delay to allow the RAID controller processor to complete its power fail sequence. After the power fail sequence is completed, additional logic (powered by VBAT_RAID) holds the DIMM clock enable signals low to keep the DDRII memory in self-refresh mode. Once power is restored, data from the DDRII memory can be written to the disk array.

8.3.7 GPIOs

The SAS/SATA RAID module has 21 GPIOs that handle various input and output functions. The GPIOs are used to control the IBBU, system indicators, and debug support.

LSI GPIO #	GPIO Description
GPIO 0	RSVD
GPIO 1	RSVD
GPIO 2	FW Reads to determine if BIOS should be disabled by FW
GPIO 3	Output on HW RAID Error Enables Speaker
GPIO 4	Serial Input Data from RAID Key (iButton)
GPIO 5	DDRII Memory Write Pending (Drives Status LED)
GPIO 6	Output IBBU BBE signal (Battery Backup Enable)
GPIO 7	Input IBBU Status
GPIO 8	Input IBBU Present
GPIO 9	Output NVRAM Strobe
GPIO 10	RSVD
GPIO 11	RSVD
GPIO 12	Alternate input for IBBU Status (Not used)
GPIO 13	RSVD
GPIO 14	RSVD
GPIO 15	RSVD
GPIO 16	RSVD
GPIO 17	Heartbeat Status (Drives LED)
GPIO 18	Server Management (SM) Bus Reset
GPIO 19	Backplane Type 0 (Not used)
GPIO 20	Backplane Type 1 (Not used)

Table 25: GPIO Descriptions

8.3.8 I-Button

The i-button is a pre-programmed serial device that acts as an activation key to enable hardware RAID. This device is integrated onto the board and is not user serviceable.

8.3.9 SMBus

The SAS/SATA RAID module SMBus0 and SMBus1 enable communication with the boot EEPROM, the DDRII SPD EEPROM, and the IBBU. The SAS/SATA RAID module also provides a pass-through of the IPMB from the baseboard to the SAS/SATA backplane.

Figure 40 SMBus Block Diagram

8.3.10 Battery Backup Power Control

The Battery backup voltage supports the DDRII SDRAM memory to maintain data integrity during a power failure. The Battery backup voltage (VBAT_RAID) power rail can be supplied from several sources and the battery backup power controller determines the appropriate source to activate.

- During normal operation VBAT_RAID is supplied by the 1.8V power rail.
- If main system power is turned off and standby power is available, the 3.3V to 1.8V linear regulator supplies power to VBAT_RAID
- If all system power fails and the DDRII SDRAM has critical data stored, VBAT_RAID is supplied by the IBBU (Intelligent Battery Backup Unit).

8.4 SAS/SATA RAID Module Buzzer

The SAS/SATA RAID module provides an audible alarm driven by the hardware RAID controller when it detects a RAID failure. The hardware RAID controller drives a GPIO 3 high to indicate the failure. This GPIO enables a 2KHz oscillator on board that is used to drive a buzzer.

8.5 SAS/SATA RAID Module Clock Generation/Distribution

The SAS/SATA RAID module uses several on-board clock sources and a system-generated 100 MHz clock (PCI Express).

Figure 41 Clock Generation/Distribution

8.5.1 33 MHz System Reference Clock

The 33 MHz clock is generated by an on-board oscillator and is used by the hardware RAID controller.

8.5.2 150 MHz SAS Clock

The 150 MHz clock is generated by an on-board oscillator and is used by the hardware RAID controller.

8.5.3 200 MHz Clock

The hardware RAID controller generates a 200 MHz clock for the DDRII interface.

8.5.4 100 MHz Clock

The base board provides a 100 MHz PCIe clock for the hardware RAID controller.

8.6 SAS/SATA RAID Module Status LEDs

Table 26 shows the system status LEDs that can be used to determine system operation.

LED	Color	Function
Write Pending (DS2D1)	Amber	Indicates a write to DDRII memory is pending
Heartbeat (DS2C1)	Amber	Indicates RAID controller is operating
SYS_ERR (DS2B1)	Amber	Indicates system error has occurred

Table 26: Clock Generation/Distribution Status LED Functions

8.7 SAS/SATA RAID Module Reset Control

The board resets are generated by on-board logic controlled by voltage 'Power Good' signals as well as the PCIe reset signal (RST_PS_PWRGD) from the T5520UR baseboard.

8.8 SAS/SATA RAID Module Flex Connector (J4B1)

The flex connection provides the interface to the server baseboard through the bridge board. The signals include the four PCIe channels, PCIe clocks, PCIe reset, the SMBus, and control signals.

Pin #	Definition	Pin#	Definition
1	SMB_HOST_3V3_SCL	2	GND
3	SMB_HOST_3V3_SCL	4	GND
5	NC_RSVD_5	6	EXP_SB_3N
7	GND	8	EXP_SB_3P
9	EXP_NB_3P	10	GND
11	EXP_NB_3N	12	GND
13	GND	14	EXP_SB_2N
15	GND	16	EXP_SB_2P
17	EXP_NB_2P	18	GND
19	EXP_NB_2N	20	GND
21	GND	22	EXP_SB_1N
23	GND	24	EXP_SB_1P
25	EXP_NB_1P	26	GND
27	EXP_NB_1N	28	GND
29	GND	30	EXP_SB_0N
31	GND	32	EXP_SB_0P
33	EXP_NB_0P	34	GND
35	EXP_NB_0N	36	GND
37	GND	38	CLK_1078_PCIe_N
39	GND	40	CLK_1078_PCle_P
41	NC_SGPIO_DATAOUT0	42	GND
43	BBU_KEY_PRSNT	44	GND
45	SMB_IPMB_5VSB_DAT	46	NC_PE_WAKE_N
47	SMB_IPMB_5VSB_CLK	48	RST_PS_PWRGD
49	GND	50	NC_SW_RAID_MODE
51	NC_SGPIO_DATAOUT1	52	GND
53	NC_SMB_SEN_3V3SB_CLK	54	NC_SGPIO_CLOCK
55	NC_SMB_SEN_3V3SB_DAT	56	NC_SGPIO_LOAD
57	LED_HDD_FLT_R_L	58	LED_HDD_ACT_R_L
59	GND	60	GND

Table 27: Flex Connector Pin-Out

8.9 SAS/SATA RAID Module Edge Connector (J2D1)

This connector provides the connection for the eight SAS/SATA channels from the hardware RAID controller to the SAS/SATA backplane. It also provides the SMBus connection to and from the

backplane and status signals. The power to the SAS/SATA RAID module is provided by the backplane through this edge finger connection

Pin #	Definition	Pin #	Definition
A1	SGPIO_CLOCK	B1	P12V
A2	SGPIO_LOAD	B2	P12V
A3	P3V3	B3	P5V
A4	SGPIO_DATAOUT0	B4	P5V
A5	SGPIO_DATAOUT1	B5	P5V
A6	LED_HDD_FLT_L	B6	P5V
A7	LED_HDD_ACT_L	B7	RSVD_B7
A8	P5V STBY	B8	RSVD B8
A9	SMB SAS 3V3 SCL	B9	GND
A10	SMB SAS 3V3 SDA	B10	SMB IPMB 5VSB CLK
A11	RST PS PWRGD	B11	SMB IPMB 5VSB DAT
A12	GND	B12	GND
A13	RSVD A13	B13	GND
A14	 GND	B14	SAS4 TX P
A15	GND	B15	SAS4 TX N
A16	SAS4 RX P	B16	GND
A17	SAS4 RX N	B17	GND
A18	GND	B18	SAS5 TX P
A19	GND	B19	SAS5 TX N
A20	SAS5 RX P	B20	
Δ21	SASS BX N	B20 B21	GND
Δ22		B21	SASE TX P
Δ23	GND	B22	SASE TX N
Δ24	SASE RY P	B24	
Δ25	SASE BX N	B25	GND
A26		B26	SAST TY P
A20 A27	GND	B20	SAS7_TX_N
A20		D21 D29	
A20	SAS7_IV_I	B20	GND
A20		D29 B30	
A30 A31	GND	B30 B31	SAS0_17_F
A31 A32		D31 D32	
A32		D32	
A33		D00	
A34	GND	D04	5A51_1A_P
A35	GND	B35	
A36	SASI_RX_P	B30	GND
A37	SASI_RX_N	B37	GND
A38	GND	B38	SAS2_IX_P
A39	GND	B39	SAS2_IX_N
A40	SAS2_RX_P	B40	GND
A41	SAS2_RX_N	B41	GND
A42	GND	B42	SAS3_IX_P
A43	GND	B43	SAS3_TX_N
A44	SAS3_RX_P	B44	GND
A45	SAS3_RX_N	B45	GND
A46	GND	B46	RSVD_B46
A47	RSVD_A47	B47	RSVD_B47
A48	RSVD_A48	B48	RSVD_B48
A49	GND	B49	GND

Table 28: Backplane Edge Finger Connector Pin-Out

8.10 SAS/SATA RAID Module IBBU Connector (J4L1)

The intelligent battery backup unit (IBBU) connector carries signals between the SAS/SATA RAID module and the IBBU. The signals carried are power, I2C, and control signals.

Pin #	Definition	Pin #	Definition
1	P1V8_VBAT_RAID	2	GND
3	P12V	4	GND
5	IBBU_PFAIL_N	6	IBBU_BBE
7	P1V8_SAS	8	NC_IBBU_8
9	P3V3_STBY_IBBU	10	GND
11	GND	12	P3V3
13	SMB_IBBU_CLK_R	14	GND
15	SMB_IBBU_DAT_R	16	IBBU_STATUS
17	GND	18	IBBU_BBSTROBE
19	GND	20	P1V8_VBAT_RAID

Table 29: IBBU Connector Pin-Out

9. PCI Riser Card Assembly

This chapter describes the design and external interface of the Kontron IP Network Server NSN2U PCI riser card assembly. This chapter is organized into the following sections:

Section 9.1	Introduction
Section 9.2	Riser Card Options
Section 9.3	Riser Card Mechanical Drawings

9.1 Introduction

The NSN2U server supports different riser card options depending on which add-in card configuration option is selected. Riser card(s) are installed in the PCI cage assembly using two keyhole features and two 6/32 screws for each riser.

9.2 Riser Card Options

The Intel[®] Server Board T5520UR has one riser slot capable of supporting riser cards for both 1U and 2U system configurations. The riser slot (J4E1) implements Intel[®] Adaptive Slot Technology. This 280pin connector is capable of supporting riser cards that meet either the PCI-X or PCI Express* technology specifications. Some risers can support both full-height and low-profile add-in cards by using a 'butterfly' configuration. See Section 9.3 for detailed mechanical information on the riser cards.

Table 30 identifies the card configurations and the connector types used.

Riser Card Option	Slot Configuration
2U PCI Express Passive Riser	Three full-height PCI Express connectors
(Product Order Code – ASR26XXFHR)	(one x16 connector* and two x8 connectors)
2U Butterfly PCI Express/PCI-X Active Riser (Product Order Code – ASR26XXFHXR)	Two full-height PCI-X 133 connectors One full-height PCI Express connector Two low-profile PCI Express connectors
2U Butterfly PCI Express Active Riser	Three full-height PCI Express connectors
(Product Order Code – ASR26XXFHLPR)	Two low-profile PCI Express* connectors

Table 30 Riser Card Configurations

NOTE: *All PCI Express add-in cards run at x8 speeds independent of population. The PCI Express x16 connectors utilize an x8 electrical connection.

Figure 42 shows the three different configuration options.

Figure 42. PCI Add-In Card Options

9.3 **Riser Card Mechanical Drawings**

Figure 43, Figure 44, and Figure 45 are mechanical drawings for both primary and secondary sides of each of the three riser card options.

PCI-X Riser

PCle x8 (FH / FL)

Cle x
Figure 43: 2U PCI Express* Passive Riser

Primary Side

Secondary Side

Figure 44: 2U Butterfly PCI-X/PCI Express Active Riser

Primary Side

Secondary Side

Figure 45: 2U Butterfly PCI Express Active Riser

Primary Side

Secondary Side

10. DC Power Subsystem

This chapter defines the features and functionality of the DC-input switching power supply subsystem. The information contained in this chapter is organized the following sections:

Section 10.1	Introduction
Section 10.2	DC Power Supply to Power Distribution Board Interconnect
Section 10.3:	DC Power Supply Input Connector Pin Definitions
Section 10.4:	DC 48V Input Power Mating Connector
Section 10.5:	DC Power Supply Output Connector Pin Definitions
Section 10.6:	DC Power Supply Output Current Requirements
Section 10.7:	DC Power Supply LED Indicator
Section 10.8	DC Power Supply Thermal Protection

10.1 Introduction

The DC power subsystem supports up to two DC power supply modules capable of operating in redundant mode and a power distribution board (PDB). The features of the DC input power supply subsystem are:

- 600W power module output capability in full DC input voltage range
- 600W subsystem output capability in full DC input voltage range
- Power Good indication LEDs
- Predictive failure warning
- Internal cooling fans with multi-speed capability
- Remote sense of 3.3 V, 5 V, and 12 Vdc (on the PDB) outputs
- DC_OK circuitry for brown-out protection and recovery
- Built-in load sharing capability
- Built-in overloading protection capability
- Onboard field replaceable unit (FRU) information
- PMBus interface for server management functions
- Integral handle for insertion/extraction

Figure 46 is a mechanical drawing of the power supply module.

Figure 46. Power Supply Module Mechanical Drawing

10.2 **DC Power Supply to PDB Interconnect**

The power supply provides a blind mate connection to the PDB to transfer the power module output voltages and signals to the PDB.

The power supply module has a protective earth ground with all secondary circuits connected to it. Resistance of the ground returns to chassis does not exceed 1.0 m Ω . This path can be used to carry DC current.

10.3 DC Power Supply Input Connector

Figure 47 shows the power input connector on the DC-input power supply module.

Figure 47. DC Power Supply Input Connector

The polarity for the connector is marked on the power supply housing; in this view, "-"is on the left and "+" is on the right.

10.4 DC Power Supply 48V Input Power Mating Connector

A Molex PN 0394210002 is the mating connector for the DC power supply module input connector. It connects 48V input power to the system. The input wiring is connected as shown in Figure 48. The DC input polarity is marked on the DC power supply module case; in Figure 48, "-"is on the left and "+" is on the right.

Figure 48 DC Power Supply Mating Connector

10.5 DC Power Supply Output Connector

This connector blind mates to the input connector of the power distribution module (PDB).

Figure 49. DC Power Supply Output Connector

Table 31. Output Connector Pin-Out

Signal Pins						
Position	1	2		4		
D	+12VRS	-12V	+5VSB	15VCC		
С	PWOK	RS RTN	+5VSB	A0		
В	+12VLS	RESERVE	PS KILL	A1		
А	PS ON#	SDA	SCL	PS ALERT#		
	Power Blades					
P1	P2	P3	P4			
+12V +12V F		RTN	RTN			

10.6 DC Power Supply Output Current Requirements

The power supply module provides three main outputs; +12V, -12V, and 5V standby, along with the 15 VBIAS voltage. The combined maximum output power of all outputs is 600W (680W peak). Each output has a maximum and minimum current rating as shown in Table 32.

	+12V	+5Vsb	-12V
Max Load	49.0A	2.0A	0.5A
Min Dynamic Load	2.5A	0.1A	0A
Min Static Load	0.5A	0.1A	0A
PEAK Load (12 seconds max)	56.0A	2.5A	N/A
Max Output Power (continuous), see note	12V x 49A = 588W max	5V x 2A = 10W max	-12V x 0.5A = 6W max
Peak Output Power (for 12s max), see note	12V x 56A = 672W peak	5V x 2.5A = 12.5W peak	N/A

Table 32. DC Power Supply 600W Load Ratings

NOTE: At max and peak loads the 12V output voltage is allowed to sag to -4 %(11.52V)

10.7 DC Power Supply LED Indicator

The power supply module provides a single external bi-color LED to indicate the status of the power supply. When DC is applied to the PSU and standby voltages are available, the LED blinks green.

The LED is green when all the power outputs are available.

The LED is amber when the power supply module has failed and is shut down because of overcurrent or over-temperature. See Table 33 for possible LED conditions.

Table 33. LED Indicators

Power Supply Condition	Bi-Color LED
No DC power to all power supplies	Off
No DC power to this PSU only (for 1+1 configuration)	
Or Power supply critical event causing a shutdown; failure, fuse blown	Amber
(1+1 only), OCP(12V), OVP(12V), fan failed	
Power supply warning events where the power supply continues to operate: high temp, high power/high current, slow fan.	1Hz blinking amber
DC present / Only 5Vsb on (PS Off)	1Hz blinking green
Output ON and OK	Green

10.8 **DC Power Supply Thermal Protection**

The power supply subsystem is protected against over-temperature conditions caused by loss of fan cooling or excessive ambient temperature. In an OTP condition the PSU shuts down. When the power supply temperature drops to within specified limits, the power supply restores power automatically while the 5VSB remains on always. The OTP circuit has built in hysteresis so the power supply does not oscillate on and off because of a temperature recovering condition. The OTP trip level has a minimum of 4°C of ambient temperature hysteresis.

11. Power Distribution Board (PDB)

This chapter defines the features and functionality of the power distribution board (PDB), which is used in conjunction with a DC or AC input power supply module to complete the power subsystem. The information in this chapter is presented in the following sections:

Section 11.1	Introduction
Section 11.2	PDB DC Output Specification
Section 11.3	PDB +12V Outputs Load Requirements
Section 11.4	PDB D2D Converters Loading
Section 11.5	PDB Output Voltage Regulation
Section 11.6	PDB Protection Circuits
Section 11.7	PDB PMBus Requirements
Section 11.8	PDB Output Interface Connectors

11.1 Introduction

The power distribution board (PDB) is designed to plug directly into the system baseboard, eliminating cumbersome wire harnesses. The AC or DC power supply modules blind mate into the PDB which then provides the system with five isolated +12V power rails. Each power rail provides 240VA protection, +3.3VDC and +5VDC DC to DC converter outputs, along with additional protection circuitry and a FRU EEPROM. Figure 50 shows the PDB.

Figure 50: Power Distribution Board

11.2 PDB DC Output Specification

The power distribution board (PDB) has a female connector that mates to a male connector located on the power supply module.

Figure 51: PDB Input Connector

Table 34. PDB Input Connector Pin-Out

Signal Pins					
Position	1	1 2		4	
D	+12VRS	-12V	+5VSB	15VCC	
С	PWOK	RS RTN	+5VSB	A0	
В	+12VLS	RS RTN	PS KILL	A1	
А	PS ON#	SDA	SDL	PS ALERT#	
Power Blades					
P1	P2	P3	P4		
+12V	+12V	RTN	RTN		

11.3 **PDB +12V Output Load Requirements**

This section describes the +12V output power requirements from the power distribution board with either one or two (redundant) ERP600W power supplies plugged into the input connector on the power distribution board.

NOTE: The combined total power limit for ALL outputs is 680W max. However, total system power is limited to 600W to enable system 1+1 power redundancy.

Table 35: PDB +12V Outputs Load Ratings

	+12V1/2/3/4/5 combined output limit = 44A / 56A peak max				
	+12V1	+12V2	+12V3	+12V4	+12V5
MAX Load	16A	16A	16A	18A	16A
MIN Static / Dynamic	0.75A	0.75A	0.5A	0.5A	0.5A
Load					
Peak load (12 seconds)	18A	18A	18A	18A	18A
Max Output Power	12V x16A =192W	12V x16A =192W	12V x16A =192W	12V x18A =216W	12V x16A =192W

11.4 PDB D2D Converters Loading

Table 36 defines power and current ratings for the three D2D converters located on the PDB, each powered from +12V rail. The three converters meet both static and dynamic voltage regulation requirements for the minimum and maximum loading conditions.

NOTE: The 3.3V/5V combined power limit is 150W maximum.

	+12VDC Input DC/DC	
	Converters	
	+3.3V Converter	+5V Converter
Maximum Load	20A	26A
Minimum Static/Dynamic Load	0.5A	0.5A
Maximum Output Power, see note 1	3.3V x20A =66W	5V x26A =130W

11.5 PDB Output Voltage Regulation

The output voltages must stay within the following voltage limits when operating at **steady state and dynamic loading conditions**. These limits include the peak-peak ripple/noise specified in Table 37 All outputs are measured with reference to the return remote sense signal (ReturnS). The 3.3V and 5V outputs are measured at the remote sense point, all other voltages measured at the output interface connector.

Converter Output	Tolerance	Minimum	Nominal	Maximum	Units
+3.3VDC	-3%/+5%	+3.20	+3.30	+3.46	VDC
+5VDC	-4%/+5%	+4.80	+5.00	+5.25	VDC
+12VDC (12V1/2/3/4/5)	-4%/+5%	+11.52	+12.00	+12.60	VDC
-12VDC	-5%/+9%	-13.08	-12.00	-11.40	VDC
5Vsb	-4%/+5%	+4.80	+5.00	+5.25	VDC

Table 37. NSN2U PDB Voltage Regulation Limits

11.6 **PDB Protection Circuits**

Protection circuits inside the power distribution board and the power supply can cause either the power supply main +12V output to shut down, which in turn shuts down the other 3 outputs on the PDB, or first shut down any of the three outputs on the PDB, which in turn also shuts down entire power supply subsystem. If the power supply latches off because of a protection circuit tripping, an AC or DC cycle OFF for 15 seconds minimum and a PSON[#] cycle HIGH for 1 second resets the power supply and the PDB.

11.7 PDB PMBus Requirements

The power supply subsystem meets the requirements of PMBus specifications parts I and II, revision 1.2.

The following related documents give more detailed information about PMBus requirements:

- PMBus[™] Power System Management Protocol Specification Part I General Requirements, Transport And Electrical Interface; Revision 1.2
- PMBus[™] Power System Management Protocol Specification Part II Command Language; Revision 1.2
- System Management Bus (SMBus) Specification Version 2.0

11.8 PDB Output Interface Connectors

11.8.1 Baseboard Connector Card Edge

The PDB has a card edge connection to the baseboard. The card edge has gold plated contacts. It mates with a Molex connector 45984-0010 (12 signals and

Figure 52 PDB Baseboard Card Edge Connector Mechanical Drawing

	Pin#	Definition
Signal pins	1	PWOK
	2	PSON#
	3	-12VDC
	4	SMBus Clock
	5	SMBus Data
	6	SMBAlert#
	7	Return Sense
	8	3.3V remote sense
	9	+5VSB
	10	+5VSB
	11	5V remote sense
	12	+5VSB
Power	P1	12V3
segments		
	P5	COMM
	P2	+5VDC
	P6	COMM
	P3	+3.3V
	P7	COMM
	P4	+12V1
	P8	+12V2

Table 38. PDB Card Edge Connector Pin-Out

11.8.2 HDD Backplane Power Connector (FPIO)

The HDD backplane power connector is a 2x6-pin connector that carries power to the SAS/SATA backplane board. +12V4, +3.3VDC, +5VDC, +5VSB, COM.

Pin #	Definition	Pin #	Definition
1	COMM	7	СОММ
2	COMM	8	СОММ
3	COMM	9	12V4
4	12V4	10	12V4
5	+3.3V	11	+5VSB
6	+5VDC	12	+5VDC

Table 39. Drive Backplane Power Connector Pin-Out

11.8.3 PDB I/O Power Connector

The I/O power connector is a 2x4-pin connector that carries power to the I/O peripherals -- +12V5, +5VDC, COM.

Pin #	Definition
1	12V5
2	+5VDC
3	12V5
4	+5VDC
5	COMM
6	COMM
7	COMM
8	COMM

Table 40. I/O Power Connector Pin-Out

12. AC Power Subsystem

This chapter defines the features and functionality of the AC-input switching power subsystem. The information contained in this chapter is organized into the following sections:

Section 12.1 Introduction

Section 12.2: AC Power Supply Output Current Requirements

Section 12.3: AC Power Supply LED Indicator

Section 12.4: AC Power Supply Air Flow

Section 12.5: AC Power Supply Thermal Protection

12.1 Introduction

The AC power subsystem has up to two redundant AC power supply modules and a power distribution board (PDB). The AC input power supply subsystem has the following features:

- 600 W module output capability in full AC input voltage range
- 600 W subsystem output capability in full AC input voltage range
- Power Good indication LEDs
- Predictive failure warning
- Internal cooling fans with multi-speed capability
- Remote sense of 3.3 V, 5 V, and 12 Vdc outputs
- AC_OK circuitry for brown out protection and recovery
- Brown out protection and recovery
- Built-in overloading protection capability
- Onboard field replaceable unit (FRU) information
- PMBus interface for server management functions
- Integral handle for insertion/extraction

The power supply module is shown in Figure 53. The power supply module contains one 40mm fan. The module provides a handle to assist in insertion and extraction and can be inserted and extracted without the assistance of tools.

Figure 53. AC Power Supply Module Mechanical Drawing

The power supply provides a pluggable terminal block that mates to a connector on the PDB. This is a blind mating connector that connects the power supply output voltages and signals.

The power supply provides a reliable protective earth ground with all secondary circuits connected. Resistance of the ground returns to chassis does not exceed 1.0 m Ω . This path can be used to carry DC current.

Figure 54: AC Power Supply Module Output Connector

Table 41. AC Output Connector Pin-Out

Signal Pins				
Position	1	2	3	4
D	+12VRS	-12V	+5VSB	15VCC
С	PWOK	RS RTN	+5VSB	A0
В	+12VLS	RESERVE	PS KILL	A1
А	PS ON#	SDA	SCL	PS ALERT#
Power Blades				
P1	P2	P3	P4	
+12V	+12V	RTN	RTN	

12.2 AC Power Supply Output Current Requirements

The power supply module provides three main outputs; +12V, -12V, and 5V standby, along with the 15VBIAS voltage. Two D2D converters located in the cage provide the 3.3V and 5V rails from the 12V provided by the power supply module.

The combined maximum output power of all outputs is 600W (680 W peak). Each output has a maximum and minimum current rating as shown in Table 42.

	+12V	+5Vsb	-12V
Maximum Load	49.0A	2.0A	0.5A
Minimum Dynamic Load	2.5A	0.1A	0A
Minimum Static Load	0.5A	0.1A	0A
Peak Load (12 Seconds Maximum)	56.0A	2.5A	N/A
Maximum Output Power (Continuous),	12V x 49A = 588W	5V x 2A = 10W	-12V x 0.5A =
See Note 1	max	max	6W max
Peak Output Power (for 10s Maximum),	12V x 56A = 672W	5V x 2.5A =	N/A
See Note 2	peak	12.5W peak	

Table 42. AC Power Supply 600W Load Ratings

NOTES:

- At max load the 12V output voltage is allowed to sag to -4%, which is 11.52V; so the actual max power is then: 11.52V x 49A = 564.5 W, and this applies also for 5VSB: 4.80Vx2A=9.6W; total max continuous power = 564.5+9.6=574.1W.
- At peak load the 12V output voltage is allowed to sag to -4%, which is 11.52V; so the actual peak power is: 11.52V x 56A = 645W; and this applies also to 5VSB: 4.80Vx2.5A=12W; the total peak power = 657 W peak

12.3 AC Power Supply LED Indicator

The power supply module provides a single external bi-color LED to indicate the status of the power supply. When AC is applied to the power supply module and standby voltages are available, the LED is blinking green.

The LED is green when all power outputs are available.

The LED is amber when the power supply fails for shutdown because of over current or shutdown because of over-temperature. See Table 43 for definitions of the LED conditions.

Power Supply Condition	Bi-color LED
No AC power to all power supplies	Off
No AC power to this PSU only (for 1+1 configuration) or Power supply critical event causing a shutdown: failure, fuse blown (1+1 only), OCP(12V), OVP(12V), fan failed	Amber
Power supply warning events where the power supply continues to operate: high temperature, high power/high current, slow fan.	1Hz blinking amber
AC present / only 5Vsb on (PS Off)	1Hz blinking green
Output on and OK	Green
No AC power to all power supplies	Off

Table 43: LED Indicator Status Conditions

12.4 AC Power Supply Air Flow

Each power supply has one 40mm fan for self-cooling that is also used for partial system cooling. The fans provide no less than 10 CFM airflow through the power supply when installed in the system and operating at maximum fan speed. The cooling air enters the power module from the PDB side (preheated air from the system). Variable fan speed is based on output load and ambient temperature. Under standby mode, the fans must run minimum the RPM.

12.5 AC Power Supply Thermal Protection

The power supply is protected against over-temperature conditions caused by loss of fan cooling or excessive ambient temperature. In an OTP condition the PSU shuts down. When the power supply temperature drops to within specified limits, the power supply I restores power automatically, while the 5VSB remains on always. The OTP circuit has built in hysteresis so the power supply does not oscillate on and off because of temperature recovering conditions. The OTP trip level has a minimum of 4°C of ambient temperature hysteresis.

13. Regulatory Specifications

The Kontron IP Network Sever NSN2U meets the specifications and regulations for safety and EMC defined in this chapter.

13.1 Safety Compliance

USA/Canada	UL 60950-1 1st Edition/CSA C22.2 No. 950-1
Europe	Nemko/GS EN 60950-1, 2nd Edition
	Low Voltage Directive, 73/23/EEC
International	CB Certificate and Report to IEC60950-1, 2 nd Edition and all international deviations

13.2 Electromagnetic Compatibility

USA	FCC 47 CFR Parts 2 and 15, Verified Class A Limit
Canada	IC ICES-003 Class A Limit
Europe	EMC Directive, 2004/108/EC
	EN55022, Class A Limit, Radiated & Conducted Emissions
	EN55024 Immunity Characteristics for ITE
	EN61000-4-2 ESD Immunity (level 2 contact discharge, level 3 air discharge)
	EN61000-4-3 Radiated Immunity (level 2)
	EN61000-4-4 Electrical Fast Transient (level 2)
	EN61000-4-5 Surge
	EN61000-4-6 Conducted RF
	EN61000-4-8 Power Frequency Magnetic Fields
	EN61000-4-11 Voltage Fluctuations and Short Interrupts
	EN61000-3-2 Harmonic Currents
	EN61000-3-3 Voltage Flicker
Australia/New	EN55022, Class A Limit
Zealand	
Japan	VCCI Class A ITE (CISPR 22, Class A Limit)
Taiwan	BSMI Approval, CNS 13438, Class A and CNS13436 Safety
Korea	KCC Approval, Class A
China	CCC Approval, Class A (EMC and Safety)
Russia	Gost Approval (EMC and safety)
International	CISPR 22, Class A Limit, CISPR 24 Immunity

13.3 CE Mark

The CE marking on this product indicates that it is in compliance with the European Union EMC Directive 2004/108/EC, and Low Voltage Directive, 73/23/EEC.

Appendix A: Glossary

This appendix contains acronyms and terms used in the preceding chapters.

Term	Definition
A, Amp	Ampere
A/µs	Amps per microsecond
AC	Alternating current
ACPI	Advanced Configuration and Power Interface
ANSI	American National Standards Institute
APIC	Advanced Programmable Interrupt Controller
ASIC	Application specific integrated circuit
AWG	American wire gauge
BIOS	Basic input/output system
BMC	Bus management controller
Bridge	Circuitry that connects one computer bus to another
Byte	8-bit quantity
С	Centigrade
CE	Community European (EU mark)
CFM	Cubic feet per minute
CISPR	International Special Committee on Radio Interference
CSA	Canadian Standards Organization
CTS	Clear to send
DAT	Digital audio tape
dB	Decibel
dBA	Acoustic decibel
В	Acoustic Bel
DC	Direct current
DC/DC	DC to DC (converter); also termed D2D
DIMM	Dual inline memory module
DMI	Desktop management interface
DOS	Disk operating system
DRAM	Dynamic random access memory
DSR	Data set ready
DTR	Data terminal ready
DWORD	Double word – 32-bit quantity
ECC	Error checking and correcting
EEPROM	Electrically erasable programmable read-only memory
EFP	Ethernet Front Panel
EMC	Electromagnetic compatibility
EMI	Electromagnetic interference
EMP	Emergency management port
EN	European Standard (Norme Européenne or Europäische Norm)
EPS	External product specification
ESCD	Extended system configuration data
ESD	Electrostatic discharge
ESR	Equivalent series resistance

Kontron IP Network Server NSN2U Technical Product Specification

Term	Definition
F	Fahrenheit
FCC	Federal Communications Commission
FFC	Flexible flat connector
Flash ROM	EEPROM
FPC	Front panel controller
FRB	Fault resilient booting
FRU	Field replaceable unit
G	Acceleration in gravity units, 1G = 980665 m/s2
Gb, Gbit	Gigabit
GB, Gbyte	Gigabyte – 1024 MB
GND	Ground
GPIO	General purpose input/output
Grms	Root mean square of acceleration in gravity units
GUI	Graphical user interface
HDD	Hard disk drive
HPIB	Hot-plug indicator board
HSC	Hot-swap controller
Hz	Hertz – 1 cycle/second
I/O	Input/output
l ² C*	Inter-integrated circuit bus
ICMB	Intelligent Chassis Management Bus
IDE	Integrated drive electronics
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
IFLASH	Utility to update flash EEPROM
IMB	Intelligent management bus
IPMB	Intelligent Platform Management Bus
IPMI	Intelligent Platform Management Initiative
IRQ	Interrupt request line
ITE	Information technology equipment
ITP	In-target probe
JAE	Japan Aviation Electronics
KB. Kbyte	Kilobyte – 1024 bytes
kV	Kilovolt – 1,000 volts
L2	Second-level cache
LAN	Local Area Network
LED	Light-Emitting Diode
LVDS	Low Voltage Differential SCSI
mA	Milliamp
MB. Mbvte	Megabyte – 1024 KB
MEC	Memory expansion card
mm	Millimeter
MPS	Multiprocessor specification
MTTR	Mean time to repair
m□	Milliohm
NEMKO	Norges Elektriske Materiellkontroll (Norwegian Board of Testing
	and Approval of Electrical Equipment)

Kontron IP Network Server NSN2U Technical Product Specification

Term	Definition
NIC	Network interface card
NMI	Non-maskable interrupt
NWPA	NetWare* Peripheral Architecture
ODI	Open data-link interface
OEM	Original equipment manufacturer
OPROM	Option ROM (expansion BIOS for a peripheral)
OS	Operating system
OTP	Over-temperature protection
OVP	Over-voltage protection
PC-100	Collection of specifications for 100 MHz memory modules
PCB	Printed circuit board
PCI	Peripheral component interconnect
PHP	PCI hot-plug
PID	Programmable interrupt device
PIRQ	PCI interrupt request line
PMM	POST memory manager
PnP	Plug and play
POST	Power-On Self Test
PSU	Power Supply Unit
PVC	Polyvinyl chloride
PWM	Pulse Width Modulation
RAS	Reliability, Availability, and Serviceability
RIA	Ring indicator
RPM	Revolutions Per Minute
RTS	Request To Send
SAF-TE	SCSI Accessed Fault-Tolerant Enclosures
SCA	Single Connector Attachment
SCL	Serial clock
SCSI	Small Computer Systems Interface
SDR	Sensor Data Records
SDRAM	Synchronous Dynamic RAM
SEC	Single Edge Connector
SEL	System Event Log
SELV	Safety Extra Low Voltage
SEMKO	Sverge Elektriske Materiellkontroll (Swedish Board of Testing and Approval of Electrical Equipment)
FP	(SAS) Front Panel
SGRAM	Synchronous Graphics RAM
SM	Server Management
SMBIOS	System Management BIOS
SMBus	Subset of I ² C bus/protocol (developed by Intel), System Management Bus
SMI	System Management Interrupt
SMM	Server Management Mode
SMP	Symmetric multiprocessing
SMRAM	System Management RAM
SMS	Server Management Software

Kontron IP Network Server NSN2U Technical Product Specification

Term	Definition
SPD	Serial Presence Detect
SSI	Server System Infrastructure
TUV	Technischer Uberwachungs-Verein (A safety testing laboratory with headquarters in Germany)
UL	Underwriters Laboratories, Inc.
USB	Universal Serial Bus
UV	Under-Voltage
V	Volt
VA	Volt-amps (volts multiplied by amps)
Vac	Volts alternating current
VCCI	Voluntary Control Council for Interference
Vdc	Volts direct current
VDE	Verband Deutscher Electrotechniker (German Institute of Electrical Engineers)
VGA	Video Graphics Array
VRM	Voltage Regulator Module
VSB	Voltage standby
W	Watt
WfM	Wired for Management
Word	A 16-bit quantity
Ω	Ohm
μf	Microfarad
μs	Microsecond

Corporate Offices

Europe, Middle East & Africa

Oskar-von-Miller-Str. 1 85386 Eching/Munich Germany Tel.: +49 (0)8165/ 77 777 Fax: +49 (0)8165/ 77 219 info@kontron.com

North America 14118 Stowe Drive Poway, CA 92064-7147 USA Tel.: +1 888 294 4558 Fax: +1 858 677 0898 info@us.kontron.com

Asia Pacific

17 Building, Block #1, ABP. 188 Southern West 4th Ring Road Beijing 100070, P.R.China Tel.: + 86 10 63751188 Fax: + 86 10 83682438 info@kontron.cn

