# **Kontron IP Network Server NSC2U**

**Technical Product Specification** 

December 2009

Rev 1.1

# Contents

| 1 | Intro | oduction                                               |
|---|-------|--------------------------------------------------------|
|   | 1.1   | Document Structure and Outline7                        |
|   | 1.2   | Related Information                                    |
| 2 | Sveta | em Overview                                            |
| 2 | 2 1   | Product Overview 8                                     |
|   | 2.1   | 2 1 1 Features 10                                      |
|   | 22    | Evternal Chassis Features 13                           |
|   | 2.2   | 2 2 1 NSC2II System Front View 13                      |
|   |       | 2.2.1 Roczo System Front View                          |
|   |       | 2.2.3 Hard Drives and Optical Drive                    |
|   |       | 2.2.3.1 Hard Drive Tray Assembly                       |
|   |       | 2.2.3.2 Optical Drive                                  |
|   |       | 2.2.4 NSC2U System Chassis Rear Panel                  |
|   | 2.3   | Internal Chassis Features                              |
|   |       | 2.3.1 T5000PAL                                         |
|   |       | 2.3.2 PCI/PCI Express Subsystem                        |
|   |       | 2.3.3 Power Subsystem                                  |
|   |       | 2.3.4 Cooling Subsystem 20                             |
|   |       | 2.3.4.1 CPU 1 and Memory Cooling Area 21               |
|   |       | 2.3.4.2 CPU 2 and Chipset Cooling Area                 |
|   |       | 2.3.4.3 PCI Cooling Area                               |
|   |       | 2.3.4.4 Hard Disk Drive and Power Supply Cooling       |
|   |       | 2 3 4 6 Cooling Summary 22                             |
|   | 24    | Server Management 22                                   |
|   | 2.5   | Specifications 23                                      |
|   | 215   | 2.5.1 Environmental Specifications                     |
|   |       | 2.5.2 Physical Specifications                          |
| 3 | Cable | es and Connectors                                      |
| 5 | 2 1   | System Interconnect Block Diagram                      |
|   | 3.1   | Cable and System Interconnect Descriptions             |
|   | 5.2   | 3.2.1 Elev Circuit 28                                  |
|   |       | 3.2.7 IDE Signal Cable 20                              |
|   |       | 3 2 3 SAS Backhlane Power Cable                        |
|   |       | 3.2.4 SMART el ISB SDD Board Signal and Power Cable 31 |
|   |       | 3.2.5 SAS RAID Battery Power Cable                     |
|   |       | 3.2.6 Front Panel Serial Port Cable                    |
|   |       | 3.2.7 Front NIC 4x Ethernet PCI Card Cable             |
|   | 3.3   | User-Accessible Interconnects                          |
|   |       | 3.3.1 Keyboard and Mouse Ports                         |
|   |       | 3.3.2 Serial Port B                                    |
|   |       | 3.3.3 Video Port                                       |
|   |       | 3.3.4 Universal Serial Bus (USB) Interface             |
|   |       | 3.3.5 Ethernet Connectors                              |
|   |       | 3.3.6 External Front Panel 4X GbE NIC Connectors       |
|   |       | 3.3.7 External SAS 4X Hard Disk Drive Connector        |
|   |       | 3.3.8 AC Power Input for AC-Input Power Supply         |
|   |       | 3.3.9 DC Power Input for DC-Input Power Supply41       |
| 4 | SAS   | Front Panel (SFP) Board                                |
| • | 4.1   | Features 42                                            |
|   |       | · •••••                                                |

| 4.2   | Overview                                                | 43 |
|-------|---------------------------------------------------------|----|
| 4.3   | Component Location                                      | 44 |
| 4.4   | Power Distribution                                      | 45 |
|       | 4.4.1 Battery Backup Power Control                      | 46 |
|       | 4.4.2 12V to 1.8V VRM                                   | 46 |
|       | 4.4.3 12V to 1.5V VRM                                   | 47 |
|       | 4.4.4 3.3V to 1.35V DC-to-DC Linear Converter           | 47 |
|       | 4.4.5 1.8V to 1.2V DC-to-DC Linear Converter            | 47 |
| 4.5   | I/O Processor Subsystem                                 | 47 |
|       | 4.5.1 PCI-X to PCI Express Bridge                       | 47 |
|       | 4.5.2 RAID Controller                                   | 47 |
|       | 4.5.3 I/O Processor                                     | 48 |
|       | 4.5.4 Flash Memory                                      | 49 |
|       | 4.5.5 NVRAM                                             | 49 |
|       | 4.5.6 PCI-X Buses                                       | 49 |
|       | 4.5.7 PCI Express Bus                                   | 49 |
|       | 4.5.8 DDR2 Bus                                          | 49 |
|       | 4.5.9 Intelligent Battery Backup Unit (IBBU)            | 49 |
|       | 4.5.10 GPIOS                                            | 50 |
|       | 4.5.11 Hardware RAID Key                                | 50 |
| 16    | 4.5.12 I C                                              | 50 |
| 4.0   | 4.6.1 DCI_V Interface                                   | 51 |
|       | 4.6.2 SAS Interface                                     | 51 |
|       | 4.6.2 SAS Intendee                                      | 51 |
|       | 4.6.3 Thas in the more y-                               | 51 |
|       | 4.6.5 Indicator Buzzer                                  | 51 |
| 4.7   | Clock Generation/Distribution                           | 51 |
|       | 4.7.1 75 MHz Sourced Clock                              | 52 |
|       | 4.7.2 133 MHz Sourced Clock                             | 52 |
|       | 4.7.3 200 MHz Sourced Clock                             | 52 |
|       | 4.7.4 100 MHz Sourced Clock                             | 52 |
|       | 4.7.5 PLD Sourced Clock                                 | 52 |
| 4.8   | Programmable Logic Device (PLD)                         | 53 |
|       | 4.8.1 Power-on/Reset                                    | 53 |
|       | 4.8.2 Buzzer Control                                    | 53 |
|       | 4.8.3 IBBU Control                                      | 53 |
| 4.9   | Hardware RAID                                           | 53 |
|       | 4.9.1 Description                                       | 53 |
|       | 4.9.2 DDR-2 Support                                     | 54 |
|       | 4.9.3 80333 I/O Processor NVRAM                         | 54 |
| 4.10  | 4.9.4 ROMB Battery Backup                               | 54 |
| 4.10  | A 10 1 00222 December 2 Coffeener DAID                  | 54 |
|       | 4.10.1 80333 Processor In Software RAID                 | 54 |
| 1 1 1 | Dobug Footures                                          | 55 |
| 4.11  |                                                         | 55 |
| 4 1 2 | Power Good Circuit                                      | 55 |
| 7.12  | 4 12 1 Power Good Outputs                               | 55 |
|       | 4 12 2 Power Good Inputs                                | 55 |
| 4,13  | Reset Control                                           | 55 |
| 4.14  | Connector Information                                   | 56 |
|       | 4.14.1 Baseboard Bridge Connector (J2C1)                | 56 |
|       | 4.14.2 Intelligent Battery Backup Unit Connector (J8B2) | 58 |
|       | 4.14.3 DDR2 DIMM Connector (J6D1)                       | 58 |

| Α | Gloss             | sary                                                                                           | 89             |
|---|-------------------|------------------------------------------------------------------------------------------------|----------------|
|   | 8.1<br>8.2<br>8.3 | Safety Compliance<br>Electromagnetic Compatibility<br>CE Mark                                  | 88<br>88<br>88 |
| 8 | Regu              | latory Specifications                                                                          | 88             |
|   |                   | 7.5.2       DC-Input PSU Power Input Connector         7.5.3       DC-Input PSU LED Indicators | 87<br>87       |
|   |                   | 7.5.1 DC-Input PSU Mechanical Specification                                                    | 86             |
|   | 7.5               | DC-input Power Supply Module                                                                   | 86             |
|   |                   | 7.4.2 AC-Input PSU Power Input Connector                                                       | 85<br>85       |
|   |                   | 7.4.1 AC-Input PSU Mechanical Specification                                                    | 85             |
|   | 7.4               | AC-input Power Supply Module                                                                   | 85             |
|   |                   | 7.3.4 Thermal Protection                                                                       | 84             |
|   |                   | 7.3.3 Air Flow                                                                                 | 84             |
|   |                   | 7.3.2 Output Current Ratings                                                                   | оз<br>84       |
|   | 7.3               | Power Supply Module Characteristics                                                            | 83<br>83       |
|   |                   | 7.2.11 FRU Data                                                                                | 83             |
|   |                   | 7.2.10 Intelligent Cage Functions                                                              | 82             |
|   |                   | 7.2.9 Hot Swapping Power Modules                                                               | 82             |
|   |                   | 7.2.8 Output Current Requirements                                                              | 82             |
|   |                   | 7.2.0 P4 SFP Board Power Connector                                                             | ŏ⊥<br>81       |
|   |                   | 7.2.5 P3 Power Signal Cable                                                                    | 80<br>01       |
|   |                   | 7.2.4 P2 Processor Power Connector                                                             | 80             |
|   |                   | 7.2.3 P1 Server Board Power Connector                                                          | 79             |
|   |                   | 7.2.2 Power Supply Cage System Interface                                                       | 78             |
|   | /.2               | 7.2.1 Power Supply Cage Mechanical Specification                                               | 77             |
|   | 7.2               | Power Supply Cage                                                                              | 76             |
| / | 7 1               | Fr Judsyslem                                                                                   | 76             |
| 7 | Down              |                                                                                                | 76             |
|   | 6.2               | PCI Express Riser Card Mechanical Specifications                                               | 74             |
| 0 | <b>PCI F</b>      | DCI-Y and DCIA Add-in Card Ontions                                                             | 72             |
| 6 |                   | Diser Cards                                                                                    | 72             |
|   | 5.6               | Power Connector Interface to Front Panel                                                       | 71             |
|   | 5.4<br>5.5        | IDE CD ROM/DVD to Server board Interface                                                       | 70             |
|   | 5.3<br>5⊿         | SAS HUD INTERTACE                                                                              | 69<br>60       |
|   | 5.2               | SFP Board Interface                                                                            | 67             |
|   | 5.1               | Overview                                                                                       | 66             |
| 5 | SAS I             | Backplane                                                                                      | 66             |
|   |                   | 4.14.10SMART EUSB SSD Interposer Board Connector                                               | 65             |
|   |                   | 4.14.9 Fan Connectors                                                                          | 63             |
|   |                   | 4.14.8 80333 Processor UART Connector (J3B1)                                                   | 63             |
|   |                   | 4.14.7 External USB/Serial (J8E1)                                                              | 62             |
|   |                   | 4.14.6 Power Connectors                                                                        | 62             |
|   |                   | 4.14.4 SAS FIEX CONNECTOR (J2D1)                                                               | 60<br>61       |
|   |                   | 4 14 4 SAS Flex Connector (12B1)                                                               | 60             |

# **Revision History**

| Date          | Revision | Description                                                                                                                                                                                                                                                                                                                                                                       |
|---------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| December 2009 | 004      | Kontron version, Rev 1.1                                                                                                                                                                                                                                                                                                                                                          |
|               |          | In "Overview" chapter, updated "Cooling System" section.<br>In "Overview" chapter, added shipping weight information to the "Physical Specifications" section.<br>In "Cables and Connectors" chapter, added "Front NIC 4x Ethernet PCI Card Cable" and                                                                                                                            |
| April 2007    | 003      | "External Front Panel 4x GbE NIC Connectors" sections. Also updated "DC Power Input for DC-<br>Input Power Supply" section.<br>In "SAS Front Panel (SFP) Board" chapter, updated "Hardware RAID" and "Software RAID"<br>sections to describe required prerequisites for each RAID type. Also, added reference to<br>document that describes hardware RAID setup.                  |
| March 2007    | 002      | In "System Overview" chapter, updated "PCI/PCI Express Subsystem" section.<br>In "Cables and Connectors" chapter, added sections for AC and DC power input connectors.<br>In new SFP Board chapter, added "Features" and "SysCon Board Connector" sections.<br>In "SysCon Board Functional Description" section, added footnote on the use of a mini-SD card<br>up to 512 Mbytes. |
| February 2007 | 001      | Initial version of document                                                                                                                                                                                                                                                                                                                                                       |

# **1** Introduction

This document provides an overview of the Kontron IP Network Server NSC2U, including information about the chassis hardware, cables, connectors, system boards, power subsystem, and regulatory requirements.

## **1.1 Document Structure and Outline**

This document is organized into the following chapters:

- Chapter 1, "Introduction" Provides an overview of this document.
- Chapter 2, "System Overview" Provides an overview of the Kontron IP Network Server NSC2U chassis hardware.
- Chapter 3, "Cables and Connectors" Describes the cables and connectors used to interconnect the system board set and the server system components. Also describes external, user-accessible connectors.
- Chapter 4, "SAS Front Panel (SFP) Board" Describes the specifications of the front panel I/O board and describes the main functions of the board. Also, describes special features including support for RAID, debug facility, "power good" circuit and reset control and provides pinout information for SFP board connectors.
- Chapter 5, "SAS Backplane" Describes the specifications of the SAS backplane that provides support for the SAS hard disk drives and the optional optical disk drive.
- Chapter 6, "PCI Riser Cards" Describes the specifications of the PCI riser cards.
- Chapter 7, "Power Subsystem" Describes the specifications of the power subsystem, including AC-input and DC-input power supply modules.
- Chapter 8, "Regulatory Specifications" Describes system compliance to regulatory specifications.

A glossary of terms and a list of useful references on related subjects is provided at the end of the manual.

# **1.2 Related Information**

The following documents are referenced in this document and provide additional information:

- Intel® Server Board S5000PAL Technical Product Specification
- 25-GS0009 Boards and Systems Environmental Governing Specification
- Intel® Embedded Server RAID Technology II, Intel® Integrated Server RAID, and Intel® RAID Controllers SRCSAS18E and SRCSAS144E Software User's Guide

# 2 System Overview

This chapter describes the features of the Kontron IP Network Server NSC2U.

This chapter is organized into the following sections.

- Product Overview
- External Chassis Features
- Internal Chassis Features
- Server Management
- Specifications

### 2.1 Product Overview

The Kontron IP Network Server NSC2U is a compact, high-density, rack mount server system with support for selected dual-core and quad-core processor models from the Intel<sup>®</sup> Xeon<sup>®</sup> 5000 sequence, and up to 32 Gbytes of DDR2-667 FBD ECC DIMM memory. The NSC2U Server supports high availability features such as hot-swappable SAS disk drives, redundant hot-swappable power supply modules and memory mirroring. The scalable architecture of the NSC2U Server supports a variety of operating systems.

Figure 1 shows the IP Network Server NSC2U assembled and Figure 2 shows the IP Network Server NSC2U with the top cover and front bezel removed.

#### Figure 1. Kontron IP Network Server NSC2U with Top Cover On





### Figure 2. Kontron IP Network Server NSC2U with Top Cover Removed

| Item | Description                                                                                             | Item | Description                                                                                        |
|------|---------------------------------------------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------|
| А    | Optical drive (optional)                                                                                | G    | System fans                                                                                        |
| В    | Power supply cage (contains one power<br>supply module with provision for an optional<br>second module) | Н    | SAS Front Panel (SFP) board; can include optional VSSD board (which provides local memory storage) |
| С    | Provision for PCI-X* and PCI Express*<br>(PCIe*) full-height and full-length add-in<br>cards            | Ι    | RJ45 COM2 and USB port 2 connectors                                                                |
| D    | Riser card assembly (containing riser cards<br>for both full-height and low-profile add-in<br>cards)    | J    | Control panel and status indicators                                                                |
| E    | Provision for two PCI Express low-profile add-<br>in cards                                              | к    | Two slots for 4x GbE NIC ports (optional)                                                          |
| F    | Intel® Server Board T5000PAL                                                                            | L    | Hot-swappable SAS disk drives (up to six)                                                          |

# 2.1.1 Features

Table 1 provides a list and brief description of the features of the IP Network Server NSC2U.

#### Table 1.IP Network Server NSC2U Feature List

| Feature                                  | Description                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                   |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Compact, high-density system             | Rack mount server with a height of 2U (3.5 inches, 8.9 cm) and a depth of 20.0 inches (50.8 cm)                                                                                                                                                                                                                                                                              |                                                                                                                                                                                   |  |
| Configuration flexibility                | One- or two-way capability in low-profile and cost/value-effective packaging<br>Stand-alone system<br>Selected dual-core and quad-core processor models from the Intel <sup>®</sup> Xeon <sup>®</sup><br>5000 sequence (one or two) †                                                                                                                                        |                                                                                                                                                                                   |  |
| Serviceability                           | Rear access to hot-swappable power supplies<br>Front access to hot-swappable SAS disk drives<br>Front access to optional optical drive<br>Ability to swap the entire drive bay as a unit                                                                                                                                                                                     |                                                                                                                                                                                   |  |
| Availability                             | Two hot-swappable 600W power supp<br>Disk subsystem configurable as hard<br>Memory sparing and memory mirrori                                                                                                                                                                                                                                                                | olies in a redundant (1+1) configuration<br>ware or software RAID<br>ng configurations supported                                                                                  |  |
| Manageability                            | Remote management<br>Emergency management port (serial and LAN)<br>IPMI 2.0 compliant<br>Remote diagnostics support<br>Optional Intel <sup>®</sup> Remote Management Module (RMM) providing GCM supp                                                                                                                                                                         |                                                                                                                                                                                   |  |
| Upgradeability and investment protection | Designed to support selected dual-core and quad-core processor models from the Intel <sup>®</sup> Xeon <sup>®</sup> 5000 sequence <sup>†</sup><br>Multi-generational chassis<br>Intel <sup>®</sup> 64 architecture support (formerly known as Intel <sup>®</sup> Extended Memory 64 Technology or Intel <sup>®</sup> EMT64)                                                  |                                                                                                                                                                                   |  |
| System-level scalability                 | Supports up to 32 Gbytes FB-DIMM in<br>Supports up to 16 Gbytes FB-DIMM in<br>Supports selected dual-core and quad<br>Xeon <sup>®</sup> 5000 sequence (one or two) †<br>Two full-height/full length x4 PCI Exp<br>One full-height/full length 64-bit x 13<br>Two low-profile/half length x4 PCI Exp<br>Six internal hot-swappable 2.5 inch S<br>One optical drive (optional) | nemory in non-mirrored mode<br>nemory in mirrored mode<br>I-core processor models from the Intel <sup>®</sup><br>ress slots<br>13 MHz PCI-X slot<br>press slots<br>AS disk drives |  |
| Front panel                              | Switches:<br>• Power switch<br>• Reset switch<br>• NMI switch<br>• ID switch                                                                                                                                                                                                                                                                                                 | LEDs:<br>ID LED<br>NIC activity LED<br>Main power LED<br>HDD activity LED<br>Status LED                                                                                           |  |
| i to get a list of compatible pro        | cessors for the NSC2U Server, see htt                                                                                                                                                                                                                                                                                                                                        | p://us.kontron.com/support/.                                                                                                                                                      |  |

#### Table 1. IP Network Server NSC2U Feature List (Continued)

| Feature                                                                                                       | Description                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| I/O                                                                                                           | <ul> <li>Front panel:</li> <li>Serial B port (RJ45)</li> <li>USB 2.0 port</li> <li>Four or eight GbE ports<br/>(optional)</li> </ul>                                                                                                                                                                                                                                                                      | <ul> <li>Rear panel:</li> <li>Dual PS/2 ports for keyboard and mouse</li> <li>Serial B port (RJ45)</li> <li>Two USB 2.0 ports</li> <li>GCM 100 Mbps management port</li> <li>Two RJ45 NIC connectors for 10/100/1000 Mbps connections</li> <li>Video connector</li> </ul> |  |
| Internal connection options                                                                                   | internal connection options       Internal connectors/headers:         • One 44-pin ATA/100 connector (power and I/O) for optical drive         • One Intel <sup>®</sup> Remote Management Module (Intel <sup>®</sup> RMM) connector         • One Intel <sup>®</sup> I/O Expansion Module connector supporting either:         • Dual GbE NIC module (optional)         • External SAS module (optional) |                                                                                                                                                                                                                                                                           |  |
| Add-in card support                                                                                           | One full-height riser slot supporting 2U PCI-X and PCI Express (PCIe) add-in cards<br>One low-profile riser slot supporting PCIe add-in cards                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                           |  |
| <sup>+</sup> To get a list of compatible processors for the NSC2U Server, see http://us.kontron.com/support/. |                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                           |  |

In the IP Network Server NSC2U, the Intel<sup>®</sup> Server Board T5000PAL server board is mounted horizontally toward the rear of the chassis behind the system fan array.

Up to six, 2.5-inch, hot-swappable, SAS-technology hard drives can be mounted in the drive bays, which are located in the left, front area of the chassis behind the front bezel. Figure 2 shows the location of the SAS drive trays.

*Note:* It is also possible to swap the entire drive bay as a unit should the unit need to be moved to another system for any reason.

The system has two slots for optional 4x GbE NIC ports. The slots are located near the center of the front of the chassis. Each slot can be configured with one of the following:

- blank panel
- 4x GbE NIC ports, with RJ45 connectors
- *Note:* The RJ45 4x GbE NIC ports are internally cabled to an optional Intel<sup>®</sup> PRO/1000 AT Quad Port Bypass Adapter configured in the full-height/full length PCIe riser card.

The SAS Front Panel (SFP) board is located in front of the CPU fan array and provides the user interface on the system front panel for system management.

The power supply modules are installed at the left-rear of the chassis. Two hotswappable 600W power supply modules can be installed for a 1+1 redundant configuration. A filler module for the empty power supply location is supplied for systems without redundancy.

The system contains a fan array consisting of two  $80 \times 38$  mm fans (CPU fans) and two  $56 \times 40$  mm fans (PCI fans) to cool the server board, PCI riser assembly and other components. The two  $80 \times 38$  mm fans are installed directly behind the SFP board in front of the server board. The two  $56 \times 40$  mm fans are located to the left of the SFP board. A fan failure is indicated by one of the fault LEDs on the SFP board.

The front bezel can be customized to meet OEM industrial design requirements. The bezel design allows adequate airflow to cool the system components. The front bezel is removed to access the drive trays.

Figure 3 shows a block diagram of the IP Network Server NSC2U, depicting major system components and the interconnections between them.



#### Figure 3. IP Network Server NSC2U Block Diagram

# 2.2 External Chassis Features

### 2.2.1 NSC2U System Front View

Figure 4 shows the front of the IP Network Server NSC2U system with the bezel installed. Figure 5 shows the front of the system with the bezel removed. Removing the bezel provides access to the hot-swappable SAS disk drives and the optical drive.

#### Figure 4. Front View of the NSC2U System (Bezel Installed)



| Item | Description                                                                    | Item | Description                                                             |
|------|--------------------------------------------------------------------------------|------|-------------------------------------------------------------------------|
| А    | Two slots for 4x GbE NIC ports (optional); filler panels shown in illustration | В    | Front panel control switches and status LEDs (see Figure 6 for details) |

### Figure 5. Front View of NSC2U System (Bezel Removed)



| Item | Description                                                                    | Item | Description      |
|------|--------------------------------------------------------------------------------|------|------------------|
| А    | Anti-static connection point                                                   | Н    | Hard drive bay 0 |
| В    | Optical drive (optional) or filler panel if no drive is installed.             | Ι    | Hard drive bay 2 |
| С    | Two slots for 4x GbE NIC ports (optional); filler panels shown in illustration | J    | Hard drive bay 4 |
| D    | Optional slot for future design use                                            | К    | Hard drive bay 1 |
| E    | Front-panel serial port connector (RJ45)                                       | L    | Hard drive bay 3 |

| Item | Description                                                             | Item | Description                                   |
|------|-------------------------------------------------------------------------|------|-----------------------------------------------|
| F    | USB port 2 connector                                                    | М    | Hard drive bay 5                              |
| G    | Front panel control switches and status LEDs (see Figure 6 for details) | N    | Drive fault indicator (one per hard drive)    |
|      |                                                                         | 0    | Drive activity indicator (one per hard drive) |

### 2.2.2 Front Panel Features

The front panel features of the IP Network Server NSC2U are shown in Figure 6 and described in Table 2. All front panel control switches and status LEDs are located on the SFP board.

Figure 6. IP Network Server NSC2U Front Panel Details



### Table 2. IP Network Server NSC2U Front Panel Features

| Item | Feature                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      | Front Panel LEDs                        |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| A    | Main power LED (green)                  | When continuously lit, indicates the presence of power supply DC output power in the server. The LED turns off when the main output power from the power supply is turned off or the power source is disrupted.                                                                                                                                                                                                           |  |  |  |
| В    | System Status<br>(green/amber)          | <ul> <li>Indicates system status as follows:</li> <li>Steady green indicates system in standby or ready for operation.</li> <li>Blinking green indicates degraded operation (e.g., power supply non-redundancy, part of system memory mapped out by BIOS).</li> <li>Blinking amber indicates one or more non-critical fault conditions.</li> <li>Steady amber indicates one or more critical fault conditions.</li> </ul> |  |  |  |
| С    | HDD Activity/Fault LED<br>(green/amber) | Indicates HDD activity when green, or an HDD fault when amber. This is<br>an aggregated indication for all hard disk drives (up to six) in the system.<br>Each hard disk contains its own activity and fault indicators.                                                                                                                                                                                                  |  |  |  |
| D    | NIC activity LED (green)                | Indicates NIC activity when lit                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| E    | System ID LED (blue)                    | Indicates system identity<br>LED can be toggled remotely or by front-panel ID switch for identification<br>purposes                                                                                                                                                                                                                                                                                                       |  |  |  |
|      | Front Panel Switches                    |                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| F    | ID switch                               | Toggles system ID LED                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| G    | NMI switch                              | Asserts NMI to the server board                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| Н    | Reset switch                            | Resets the system                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Ι    | Power switch                            | Toggles the system power                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

# 2.2.3 Hard Drives and Optical Drive

The IP Network Server NSC2U chassis can include up to six hot-swappable hard drives (item B in Figure 7) that are accessible from the front of the chassis and provision for an optional front-accessible optical drive (item A in Figure 7).

SAS 2.5-inch hard disk drives are mounted in removable drive trays that latch into the drive bay subassembly. The SAS drives are hot-swappable. The optical drive, which is **not** hot-swappable, is mounted in a slot above the hard drives.

Removal of the front bezel is required to access the SAS drives. To remove the optical drive, the top cover must be removed in addition to the front bezel.

Figure 7. Hard Drive and Optical Drive



### 2.2.3.1 Hard Drive Tray Assembly

Each hard drive used in the system is a hot-swappable unit. A hard drive is removed from the system by pressing the green button on the front of the hard drive tray and pulling the hard drive tray out of the system. As indicated in Figure 8, the hard drive (A) can be separated from the hard drive tray (B) by removing the four screws (C).

#### Figure 8. Hard Drive Tray Assembly



#### 2.2.3.2 Optical Drive

The IP Network Server NSC2U can support an optional 0.5 inch (12.7 mm) slim-line optical drive. If the optical drive is not installed, a blank filler unit is installed.

When installing an optical drive, the top cover and the front bezel of the chassis must be removed. The blank filler unit is removed by releasing the engagement tab from the SAS backplane and sliding the filler unit out through the front wall of the chassis, as implied in Figure 7.

The engagement tab must be removed from the blank filler panel and attached to the optical drive using the two mounting screws as shown in Figure 9. The optical drive can then be installed through the front wall of the chassis. The engagement tab holds the optical drive firmly in position when fully installed.

*Note:* The optical drive or blank filler unit can be inserted or removed only when the system is powered off.

### Figure 9. Optical Drive and Retention Mechanism



# 2.2.4 NSC2U System Chassis Rear Panel

Figure 10 shows the rear of the IP Network Server NSC2U system and Table 3 describes the main components.



### Figure 10. NSC2U Rear View

#### Table 3. Rear Panel Components

| Item           | Description                                                                                                                                                                                                                                                                                                                                  | Item | Description                        |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------|--|
| А              | Low-profile PCI Express add-in cards (or filler panels)                                                                                                                                                                                                                                                                                      | Н    | USB 0 and USB 1 port connectors    |  |
| В              | Full-height PCI-X/PCI Express add-in cards (or filler panels)                                                                                                                                                                                                                                                                                | Ι    | Video connector                    |  |
| С              | Ground studs (used for DC-input system)                                                                                                                                                                                                                                                                                                      | J    | GbE NIC #2 connector               |  |
| D              | Power supply 2 slot; filler panel shown                                                                                                                                                                                                                                                                                                      | К    | GbE NIC #1 connector               |  |
| E              | Power supply 1 <sup>+</sup>                                                                                                                                                                                                                                                                                                                  | L    | RJ45 serial port connector         |  |
| F              | GCM port connector (optional) <sup>++</sup>                                                                                                                                                                                                                                                                                                  | М    | PS/2 keyboard and mouse connectors |  |
| G              | I/O expansion module connector (optional) <sup>+++</sup>                                                                                                                                                                                                                                                                                     |      |                                    |  |
| +<br>++<br>+++ | In Figure 10, the power supply shown is an AC-input module. DC-input modules are also available.<br>If GCM is not present, a filler panel occupies this space.<br>May be either an external SAS port connector or a Gigabit Ethernet port connector. If neither of the<br>optional modules is installed, a filler panel occupies this space. |      |                                    |  |

# 2.3 Internal Chassis Features

### 2.3.1 T5000PAL

The NSC2U Server uses the Intel<sup>®</sup> Server Board T5000PAL server board. The T5000PAL server board is very similar to the S5000PAL server board as documented in the *Intel*® *Server Board S5000PAL Technical Product Specification* with a few modifications to optimize its use in telecommunications servers.

Most modifications do not change the physical or functional characteristics of the board, with the exception of a serial header J1H2 which has been added to accommodate the connection of the front panel serial port cable (see Figure 14, "IP Network Server NSC2U System Interconnect Block Diagram" on page 27).

### 2.3.2 PCI/PCI Express Subsystem

The IP Network Server NSC2U incorporates a PCI riser assembly that supports installation of PCI-X and PCI Express add-in boards. The assembly includes two riser cards that provide a total of five standard interface slots for add-in boards by connecting to two special slots on the Intel<sup>®</sup> Server Board T5000PAL.

One of the riser card slots is a PCI super slot that contains all the signals necessary to support both PCI-X and PCI Express (PCIe) expansion slots. The riser card that connects to the super slot supports the connection of full-height PCI-X or PCIe add-in cards. For PCI-X add-in cards, the super slot riser card implements a 64-bit PCI-X slot with bus speeds of 66 MHz, 100 MHz, or 133 MHz. For PCIe cards, the super slot riser card implements a  $\times 8$  link interface that can be used with one or two add-in cards that implement x1 or x4 interfaces or a single x8 card. See Table 45, "Full-Height Riser Card Configurations and Throughput" on page 73 for the supported configurations.

The second riser card slot supports PCIe only. The low-profile riser card that plugs into this slot supports the connection of low-profile PCIe add-in cards only and implements two ×4 link interfaces. Up to two low-profile PCIe add-in cards can be installed. See Table 46, "Low-Profile Riser Card Configurations and Throughput" on page 74 for the supported configurations.

Add-in cards are inserted into the riser assembly when the assembly is removed from the chassis. Figure 11 shows the removal of the riser assembly (A) from the chassis. The guide forks (B) help align the riser assembly with alignment pins on the server chassis when reinstalling the riser assembly.

Figure 12 shows the installation of a full-height PCI-X or PCIe add-in card (A) into the full-height riser card (B) and the installation of a low-profile PCIe add-in card (E) into the low-profile riser card (F). The full-height PCI-X or PCIe add-in cards are supported by a retainer clip (C) which is held in the locked position by a captive screw (D).

After the add-in cards are installed, the riser assembly is plugged back into the system and the I/O brackets of all the add-in cards are accessible through the rear panel of the server chassis.



#### Figure 11. Removing and Installing the PCI Riser Assembly



#### Figure 12. Installing Add-in Cards in PCI Riser Assembly

### 2.3.3 Power Subsystem

The power subsystem for the IP Network Server NSC2U consists of up to two hotswappable Power Supply Units (PSUs) and a Power Distribution Board (PDB). The system can be configured and operated with either AC-input or DC-input PSUs located at the left, rear of the chassis. The power supply modules dock into a common PDB.

The system can contain up to two PSUs and can be configured as follows:

- two PSUs installed, (1+1) power redundancy for maximally loaded system
- one PSU installed, non-redundant for maximally loaded system

When the system is configured with two power supply modules, the hot-swap feature allows the user to replace a failed PSU without interrupting system operation. To ensure that all components remain within specification under all system environmental conditions, two minutes is the recommended maximum duration for PSU hot-swap operations.

Refer to Chapter 7, "Power Subsystem" for more detailed information on the power subsystem.

*Note:* When the system is configured with one power supply module, this module must be installed in slot 1, that is, the right slot when the installer is facing the rear of chassis.

### 2.3.4 Cooling Subsystem

All system components except the power supply cage, which is cooled by fans integrated into the PSUs, are cooled by two sets of fans mounted near the middle of the chassis as shown in Figure 13.

### Figure 13. Cooling Fans



The IP Network Server NSC2U system comes in a non-redundant, four-fan configuration that consists of two  $80 \times 38$  mm fans and two  $56 \times 40$  mm dual, counterrotating fan assemblies. Each fan provides a tachometer signal output to allow the server board to monitor the fan speeds. Each fan has an associated fan-failure LED on the SFP board to help isolate a fan failure.

There are three cooling areas (domains) in the NSC2U Server system:

- domain 1 CPU 1 and memory; see area outlined in blue in Figure 13
- domain 2 CPU 2, chipset, and any low-profile PCIe add-in cards; see area outlined in green in Figure 13
- domain 3 any full length PCI-X or PCIe add-in cards; see area outlined in red in Figure 13

### 2.3.4.1 CPU 1 and Memory Cooling Area

One of the system's big fans provides cooling for domain 1, outlined in blue in Figure 13. This fan facilitates the flow of air through the front bezel over the SFP, through the fan, and over the server board, CPU 1, memory, and ultimately out through the rear of the chassis.

#### 2.3.4.2 CPU 2 and Chipset Cooling Area

One of the system's big fans provides cooling for domain 2, outlined in green in Figure 13. This fan facilitates the flow of air through the front bezel over the SFP, through the fan, and over the server board, CPU 2, chipset and any low-profile PCIe add-in cards, and ultimately out through the rear of the chassis.

### 2.3.4.3 PCI Cooling Area

The two  $40 \times 40 \times 56$  mm dual-rotor fans (A in Figure 13) facilitate the flow of air through the front bezel, through the fans, over the server board and any full-length PCI-X or PCIe add-in cards, and ultimately out through the rear of the chassis.

#### 2.3.4.4 Hard Disk Drive and Power Supply Cooling

Airflow to cool the hard disk drives is provided by the fans that are integrated into the PSUs. The airflow is adequate even with a single PSU installed as long as a filler panel is installed in the other PSU slot.

### 2.3.4.5 Fan Speed Control

The server board contains Pulse Width Modulation (PWM) circuits, which control the 12 Vdc fan voltage to provide quiet operation when system ambient temperature is low and there are no fan failures. There is one PWM circuit for each cooling domain, resulting in one PWM being connected to each of the two  $80 \times 38$  mm fans and the other PWM connected to the two dual-rotor  $56 \times 40$  mm fans. Based on the ambient temperature, monitored by the front panel sensor, the fan speeds (PWM duty cycle) are set per Table 4.

#### Table 4.Fan Speed Settings

| Temperature (°C) | CPU1 Fan<br>PWM DC (%) | CPU2 Fan<br>PWM DC (%) | PCI Fans<br>PWM DC (%) |
|------------------|------------------------|------------------------|------------------------|
| 0 - 28           | 46                     | 46                     | 46                     |
| 29               | 47                     | 47                     | 47                     |
| 30               | 48                     | 48                     | 48                     |
| 31               | 53                     | 53                     | 53                     |
| 32               | 58                     | 58                     | 58                     |
| 33               | 63                     | 63                     | 63                     |
| 34               | 68                     | 68                     | 68                     |
| 35               | 73                     | 73                     | 73                     |
| 36               | 78                     | 78                     | 78                     |
| 37               | 84                     | 84                     | 84                     |
| 38               | 89                     | 89                     | 89                     |
| 39               | 95                     | 95                     | 95                     |
| 40               | 100                    | 100                    | 100                    |

### 2.3.4.6 Cooling Summary

The four-fan cooling subsystem of the NSC2U Server is sized to provide cooling for:

- up to two server board processors
- up to 32 Gbytes of FB DIMM memory
- up to six SAS hard drives
- up to five PCI add-in cards consuming a maximum of 25W for each full-height PCI-X/PCIe add-in cards and 10W for each low-profile PCIe add-in card

The cooling subsystem is designed to meet acoustic and thermal requirements at the lower fan speed settings. At the higher fan speed settings, thermal requirements are met for the maximum ambient temperatures, but acoustic requirements are not met. The environmental specifications are summarized in Section 2.5.1, "Environmental Specifications" on page 23.

### 2.4 Server Management

Refer to the *Intel<sup>®</sup> Server Board S5000PAL Technical Product Specification* for a detailed description of the Server Management design and its features.

The Server Management sub-system provided by the IP Network Server NSC2U consists of:

- a micro-controller
- communication buses
- sensors
- system BIOS
- server management firmware

Standard on-board platform instrumentation is provided by the Baseboard Management Controller (BMC) component of the ESB2-E.

Table 5 summarizes the supported features:

#### Table 5. Server Management Features

| Element                                                                                                                                                        | Supported (Yes/No)   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| IPMI Messaging, Commands, and Abstractions                                                                                                                     | Yes                  |
| Baseboard Management Controller (BMC)                                                                                                                          | Yes                  |
| Sensors                                                                                                                                                        | Yes                  |
| Sensor Data Records (SDRs) and SDR Repository                                                                                                                  | Yes                  |
| FRU Information                                                                                                                                                | Yes                  |
| Autonomous Event Logging                                                                                                                                       | Yes                  |
| System Event Log (SEL)                                                                                                                                         | Yes<br>3,276 entries |
| BMC Watchdog Timer, covering BIOS and run-time software                                                                                                        | Yes                  |
| IPMI Channels, and Sessions                                                                                                                                    | Yes                  |
| Emergency Management Port (EMP) - IPMI Messaging over Serial/Modem.<br>This feature is also referred to as Direct Platform Control (DPC) over<br>serial/modem. | Yes                  |
| Serial/Modem Paging                                                                                                                                            | Yes                  |

### Table 5. Server Management Features (Continued)

| Element                                                                                                                                                               | Supported (Yes/No)                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Serial/Modem Alerting over PPP using the Platform Event Trap (PET) format                                                                                             | Yes                                              |
| DPC (Direct Platform Control) - IPMI Messaging over LAN (available via both<br>on-board network controllers)<br>Available over dedicated management port (ESB2 NIC 1) | Yes                                              |
| LAN Alerting using PET                                                                                                                                                | Yes                                              |
| Platform Event Filtering (PEF)                                                                                                                                        | Yes                                              |
| Intelligent Chassis Management Bus (ICMB) - IPMI messaging between chassis                                                                                            | Yes                                              |
| PCI SMBus support                                                                                                                                                     | Yes                                              |
| Fault Resilient Booting                                                                                                                                               | Yes                                              |
| BIOS logging of POST progress and POST errors                                                                                                                         | Yes                                              |
| Integration with BIOS console redirection via IPMI v2.0 Serial Port Sharing                                                                                           | Yes                                              |
| Access via web browser                                                                                                                                                | No<br>Requires Remote Management<br>Module (RMM) |
| SNMP access                                                                                                                                                           | Yes                                              |
| Telnet access                                                                                                                                                         | No                                               |
| DNS support                                                                                                                                                           | Yes                                              |
| DHCP support (dedicated NIC only)                                                                                                                                     | Yes                                              |
| Memory Sparing/Mirroring sensor support                                                                                                                               | Yes                                              |
| Alerting via Email                                                                                                                                                    | Yes                                              |
| Keyboard, Video, Mouse (KVM) redirection via LAN                                                                                                                      | No<br>Requires Remote Management<br>Module (RMM) |
| High speed access to dedicated NIC                                                                                                                                    | Yes                                              |

# 2.5 Specifications

# 2.5.1 Environmental Specifications

The IP Network Server NSC2U system is tested to the environmental specifications indicated in Table 6.

### Table 6. Environmental Specifications Summary

| Environment                | Specification                                                                                                                                                            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature, operating     | 10°C to 35°C (50°F to 95°F)                                                                                                                                              |
| Temperature, non-operating | -40°C to 70°C (-40°F to 158°F)                                                                                                                                           |
| Humidity, operating        | 5% to 85%                                                                                                                                                                |
| Humidity, non-operating    | 50% to 90%, non-condensing with a maximum wet bulb of 28°C (at temperatures from 25°C to 35°C) as per 25-GS0009 Boards and Systems Environmental Governing Specification |
| Altitude                   | 0 to 1,800 m (0 to 5,900 ft.) @ 40°C, temperature derated by 1°C for each additional 300m (985 ft.)                                                                      |
| Vibration, non-operating   | 2.2 Grms, 10 minutes per axis on all three axes as per 25-GS0009 Boards and Systems Environmental Governing Specification                                                |

| Table 6. | <b>Environmental</b> | Specifications | Summarv | (Continued) |   |
|----------|----------------------|----------------|---------|-------------|---|
|          | Environnentur        | opeenications  | Samury  | Continucu   | / |

| Environment                   | Specification                                                                                                                                                                                 |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Shock, operating              | Half-sine 2 G, 11 ms pulse, 100 pulses in each direction, on each of the three axes as per 25-GS0009 Boards and Systems Environmental Governing Specification                                 |
| Shock, non-operating          | Trapezoidal, 25 G, 170 inches/second delta V, three drops in each direction, on each of the three axes as per 25-GS0009 Boards and Systems Environmental Governing Specification              |
| Electrostatic discharge (ESD) | Tested to ESD levels up to 15 kilovolts (kV) air discharge and up to 8 kV contact discharge without physical damage as per 25-GS0009 Boards and Systems Environmental Governing Specification |
| Acoustic                      | Sound power: < 7.0 BA at ambient temperatures at $23 \pm 2^{\circ}$ C measured per 25-GS0009 Boards and Systems Environmental Governing Specification                                         |
| RoHS                          | Complies with RoHS Directive 2002/95/EC                                                                                                                                                       |

# 2.5.2 Physical Specifications

Table 7 provides the physical dimensions of the IP Network Server NSC2U.

### Table 7.Physical Dimensions

| Dimension       | Value                   |
|-----------------|-------------------------|
| Height          | 3.45 inches (87.6 mm)   |
| Width           | 17.14 inches (435.3 mm) |
| Depth           | 20.0 inches (508 mm)    |
| Front clearance | 2.0 inches (76 mm)      |
| Side clearance  | 1.0 inches (25 mm)      |
| Rear clearance  | 3.6 inches (92 mm)      |

Table 8 provides the shipping weigh8s of the IP Network Server NSC2U server andassociated major components.

### Table 8.Shipping Weights

| Description                                                                                                                        | Weight<br>(kg) | Weight<br>(lbs) |
|------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|
| Kontron IP Network Server NSC2U, Base Model 0<br>Includes 600W <b>AC Power Supply</b><br>(does not include processor, memory, HDD) | 15.8           | 35.0            |
| Kontron IP Network Server NSC2U, Base Model 0<br>Includes 600W <b>DC Power Supply</b><br>(does not include processor, Memory, HDD) | 15.8           | 35.0            |
| Kontron IP Network Server NSC2U, standard packaging                                                                                | 3.6            | 8.0             |
| TIGI2U AC Power Supply Module                                                                                                      | 1.6            | 3.5             |
| TIGI2U DC Power Supply Module                                                                                                      | 1.6            | 3.5             |
| NSC2U CPU heatsink with hardware                                                                                                   | 1.1            | 2.5             |
| Quad Copper GbE Bypass NIC in Front, single board                                                                                  | 0.34           | 0.75            |
| Quad Copper GbE Bypass NIC, single board                                                                                           | 0.34           | 0.75            |
| NSC2U Quad NIC-in-Front cable assembly with copper escutcheon and mounting hardware spare                                          | 0.23           | 0.50            |

# Table 8. Shipping Weights (Continued)

| Description                                                         | Weight<br>(kg) | Weight<br>(lbs) |
|---------------------------------------------------------------------|----------------|-----------------|
| eUSB SSD board, with cable                                          | 0.09           | 0.20            |
| RAID5 kit: RAID memory, hardware RAID key, cable for battery backup | 0.34           | 0.75            |
| RAID battery backup kit                                             | 0.23           | 0.50            |
| Intel® Remote Management Module 2 (RMM2) - single pack              | 0.15           | 0.33            |
| I/O Module (four port external SAS)                                 | 0.11           | 0.25            |
| I/O Module (dual copper NIC ports)                                  | 0.11           | 0.25            |
| NSC2U Bezel (unpainted)                                             | 0.34           | 0.75            |
| TIGW1U SAS HDD carrier                                              | 0.11           | 0.25            |
| Generic 2.5-inch hard disk drive                                    | 0.23           | 0.50            |
| Generic DIMMs (quantity of 2)                                       | 0.11           | 0.25            |

# 3 Cables and Connectors

This chapter describes interconnections between the various components of the Kontron IP Network Server NSC2U and provides overview diagrams as well as tables describing the signals and pin-outs for the system connectors. Refer to the *Intel*<sup>®</sup> *Server Board S5000PAL Technical Product Specification* or the system board sections of this manual for connector signal descriptions and pin-outs not listed in this section.

The information contained in this chapter is organized into the following sections:

- System Interconnect Block Diagram
- Cable and System Interconnect Descriptions
- User-Accessible Interconnects

# 3.1 System Interconnect Block Diagram

Figure 14 is a block diagram showing the interconnection of system components in the IP Network Server NSC2U.



### Figure 14. IP Network Server NSC2U System Interconnect Block Diagram

# **3.2 Cable and System Interconnect Descriptions**

The Kontron IP Network Server NSC2U uses the following internal cables:

- Flex Circuit
- IDE Signal Cable
- SAS Backplane Power Cable
- SMART eUSB SDD Board Signal and Power Cable
- SAS RAID Battery Power Cable
- Front Panel Serial Port Cable
- Front NIC 4x Ethernet PCI Card Cable

# 3.2.1 Flex Circuit

The flex circuit is an impedance-controlled flexible circuit with 80 signal connections that interconnect J5A1 on the SAS backplane and J2B1 on the SFP Board.

Figure 15 shows the flex circuit cable. Table 9 lists the pin-out for the SFP board connector.

#### Figure 15. Flex Circuit Cable



### Table 9. Front Panel Flex Connector Pin-Out (Sheet 1 of 2)

| Pin # | Front Panel Signal | Pin # | Front Panel Signal |
|-------|--------------------|-------|--------------------|
| 1     | FP_FLEX _PRES1     | 2     | SMB_SAS_3V3_SCL    |
| 3     | IPMB_I2C_SCL       | 4     | SMB_SAS_3V3_SDA    |
| 5     | IPMB_I2C_SDA       | 6     | NC_FLEX_CONN_6     |
| 7     | NC_FLEX_CONN_7     | 8     | SGPIO_CLOCK_R      |
| 9     | GROUND             | 10    | SGPOI_LOAD_R       |
| 11    | NC_SAS7_C_TX_N     | 12    | GROUND             |
| 13    | NC_SAS7_C_TX_P     | 14    | GROUND             |
| 15    | GROUND             | 16    | NC_SAS7_C_RX_N     |
| 17    | GROUND             | 18    | NC_SAS7_C_RX_P     |
| 19    | NC_SAS6_C_TX_P     | 20    | SGPIO_DATAOUT0_R   |
| 21    | NC_SAS6_C_TX_N     | 22    | GROUND             |
| 23    | GROUND             | 24    | NC_SAS6_C_RX_N     |
| 25    | GROUND             | 26    | NC_SAS6_C_RX_P     |
| 27    | SAS5_C_TX_N        | 28    | SGPIO_DATAOUT1_R   |
| 29    | SAS5_C_TX_P        | 30    | GROUND             |
| 31    | GROUND             | 32    | SAS5_C_RX_N        |
| 33    | GROUND             | 34    | SAS5_C_RX_P        |
| 35    | SAS4_C_TX_P        | 36    | NC_FP_PWR_ENABLE   |
| 37    | SAS4_C_TX_N        | 38    | GROUND             |
| 39    | GROUND             | 40    | SAS4_C_RX_P        |

| Pin # | Front Panel Signal | Pin # | Front Panel Signal |
|-------|--------------------|-------|--------------------|
| 41    | GROUND             | 42    | SAS4_C_RX_N        |
| 43    | SAS3_C_TX_N        | 44    | GROUND             |
| 45    | SAS3_C_TX_P        | 46    | GROUND             |
| 47    | GROUND             | 48    | SAS3_C_RX_N        |
| 49    | GROUND             | 50    | SAS3_C_RX_P        |
| 51    | SAS2_C_TX_N        | 52    | GROUND             |
| 53    | SAS2_C_TX_P        | 54    | GROUND             |
| 55    | GROUND             | 56    | SAS2_C_RX_N        |
| 57    | GROUND             | 58    | SAS2_C_RX_P        |
| 59    | SAS1_C_TX_N        | 60    | LED_HDD_ACT_R_L    |
| 61    | SAS1_C_TX_P        | 62    | GROUND             |
| 63    | GROUND             | 64    | SAS1_C_RX_N        |
| 65    | GROUND             | 66    | SAS1_C_RX_P        |
| 67    | SAS0_C_TX_P        | 68    | LED_HDD_FLT_R_L    |
| 69    | SAS0_C_TX_N        | 70    | GROUND             |
| 71    | GROUND             | 72    | SAS0_C_RX_N        |
| 73    | NC_FLEX_CONN_73    | 74    | SAS0_C_RX_P        |
| 75    | NC_DIFF2_P         | 76    | GROUND             |
| 77    | NC_DIFF2_N         | 78    | NC_FLEX_CONN_78    |
| 79    | GROUND             | 80    | FP_FLEX_PRES1      |

### Table 9. Front Panel Flex Connector Pin-Out (Sheet 2 of 2)

# 3.2.2 IDE Signal Cable

The IDE Signal cable is a standard  $2 \times 22$  position, 0.05 inch centers, 28 AWG ribbon cable that interconnects J3G1 on the Intel® Server Board T5000PAL and J6M1 on the SAS Backplane for use by the optical device (optional).

Figure 16 illustrates the physical details of the cable assembly, with all dimensions in inches. Table 10 lists the pin-out for J3G1 connector on the server board.



### Figure 16. IDE Signal Cable Physical Details

### Table 10. IDE Signal Cable Connector J3G1 Pin-out

| Pin # | Signal Name     | Pin # | Signal Name      |
|-------|-----------------|-------|------------------|
| 1     | RST_IDE_L       | 2     | GROUND           |
| 3     | RIDE_DD <150> 7 | 4     | RIDE_DD <150> 8  |
| 5     | RIDE_DD <150> 6 | 6     | RIDE_DD <150> 9  |
| 7     | RIDE_DD <150> 5 | 8     | RIDE_DD <150> 10 |
| 9     | RIDE_DD <150> 4 | 10    | RIDE_DD <150> 11 |
| 11    | RIDE_DD <150> 3 | 12    | RIDE_DD <150> 12 |
| 13    | RIDE_DD <150> 2 | 14    | RIDE_DD <150> 13 |
| 15    | RIDE_DD <150> 1 | 16    | RIDE_DD <150> 14 |
| 17    | RIDE_DD <150> 0 | 18    | RIDE_DD <150> 15 |
| 19    | GROUND          | 20    | NC               |
| 21    | RIDE_DDREQ      | 22    | GROUND           |
| 23    | RIDE_DIOW_N     | 24    | GROUND           |
| 25    | RIDE_DIOR_N     | 26    | GROUND           |
| 27    | RIDE_DIORDY     | 28    | IDE_CSEL         |
| 29    | RIDE_DDACK_N    | 30    | GROUND           |
| 31    | IRQ_IDE         | 32    | RIDE_P32         |
| 32    | RIDE_P32        | 32    | RIDE_P32         |
| 33    | RIDE_DA1        | 34    | IDE_PRI_CBLSNS   |
| 35    | RIDE_DA0        | 36    | RIDE_DA2         |

| Pin # | Signal Name    | Pin # | Signal Name    |
|-------|----------------|-------|----------------|
| 37    | RIDE_DCS1_N    | 38    | RIDE_DCS3_N    |
| 39    | LED_IDE_L      | 40    | GROUND         |
| 41    | NC_44P_IDE_P41 | 42    | NC_44P_IDE_P42 |
| 43    | NC_44P_IDE_P43 | 44    | NC_44P_IDE_P44 |

#### Table 10. IDE Signal Cable Connector J3G1 Pin-out (Continued)

### 3.2.3 SAS Backplane Power Cable

The SAS Backplane power cable is a 2x6 20 AWG conductor discrete wire harness that interconnect J3L1 on the SAS Backplane and J1D2 on the SFP Board.

Figure 17 shows the SAS Backplane power cable (all dimensions are in inches). Table 11 gives the connector pin-out.

### Figure 17. SAS Backplane Power Cable



### Table 11. SAS Backplane Power Cable Connections

| Pin # | Signal | Wire Number | Pin # | Signal | Wire Number |
|-------|--------|-------------|-------|--------|-------------|
| 1     | PV5    | 1           | 7     | P5V    | 2           |
| 2     | PV5    | 3           | 8     | P5V    | 4           |
| 3     | P12V   | 5           | 9     | P3V3   | 6           |
| 4     | P12V   | 7           | 10    | GND    | 8           |
| 5     | GND    | 9           | 11    | GND    | 10          |
| 6     | GND    | 11          | 12    | GND    | 12          |

### 3.2.4 SMART eUSB SDD Board Signal and Power Cable

The optional SMART eUSB SDD board connects to the SFP board with a single signal and power cable to the interposer board. The physical details of this cable are shown in Figure 18 (all dimensions in inches), and the pin-out of the connectors is given in Table 12.



#### Figure 18. Interposer Board Signal and Power Cable Physical Details

### Table 12. 2X3 Connector Pin-Out

| Pin # | Signal             |
|-------|--------------------|
| 1     | GND                |
| 2     | Keyed (no connect) |
| 3     | SYSCON_USB_P       |
| 4     | SYSCON_PWR         |
| 5     | SYSCON_USB_N       |
| 6     | GND                |

### 3.2.5 SAS RAID Battery Power Cable

The SAS RAID battery power cable connects J8B2 on the SFP board to the corresponding connector on the Intelligent Battery Backup Unit (IBBU).

Figure 19 shows the SAS RAID battery power cable (all dimensions are given in inches). Table 13 gives the connection for the 1x20 connector (P2).

#### Figure 19. SAS RAID Battery Power Cable Physical Details



| Pin # | Signal Name |
|-------|-------------|
| 1     | 12V         |
| 3     | NC          |
| 2     | GND         |
| 4     | GND         |
| 5     | VBAT_RAID   |
| 6     | GND         |
| 7     | 3.3V        |
| 8     | GND         |
| 9     | VBAT_RAID   |
| 10    | GND         |
| 11    | RESET_N     |
| 12    | GND         |
| 13    | SCK         |
| 14    | GND         |
| 15    | SDA         |
| 16    | PFAIL_N     |
| 17    | DDR_SEL     |
| 18    | BBE         |
| 19    | BBSTROBE    |
| 20    | STATUS      |

#### Table 13. Battery Backup Unit Power Cable Connector

## **3.2.6 Front Panel Serial Port Cable**

The front panel serial port cable connects J1H2 on the Intel $^{(\!R\!)}$  Server Board T5000PAL to J8B1 on the SFP board.

Figure 20 shows the front panel serial port cable, with all dimensions in inches. Table 14 gives the cable connector pin-out.

#### Figure 20. Front-Panel Serial Port Cable Physical Details



| Pin # | Signal Name | Pin # | Signal Name |
|-------|-------------|-------|-------------|
| 1     | EMP_DCD_L   | 2     | EMP_DSR_N   |
| 3     | EMP_SIN     | 4     | EMP_RTS_N   |
| 5     | EMP_SOUT    | 6     | EMP_CTS_N   |
| 7     | EMP_DTR_N   | 8     | NC_EMP_RI_N |
| 9     | EMP_INUSE_L | 10    | NC_5V_STBY  |
| 11    | GND         | 12    | NC (key)    |

#### Table 14. Front Panel Serial Cable Connections

### **3.2.7** Front NIC 4x Ethernet PCI Card Cable

This cable routes the four Ethernet ports on the optional Intel<sup>®</sup> PRO/1000 AT Quad Port Bypass Adapter to the front panel. The cable consists of four port cables and a LED cable as shown in Figure 21. The RJ45 connectors corresponding to each port are color coded as indicated in Table 15. The LED cable pin-out is given in Table 16.

*Note:* The maximum length of Ethernet cable runs that connect to front panel 4x GbE NIC ports is 50m.

#### Figure 21. Front NIC 4x Ethernet PCI Card Cable Physical Details



### Table 15. Front NIC 4x Ethernet PCI Card Cable Port Connectors

| Port | Connector Color |  |
|------|-----------------|--|
| А    | Red             |  |
| В    | White           |  |
| С    | Blue            |  |
| D    | Yellow          |  |

### Table 16. Front NIC 4x Ethernet PCI Card Cable LED Cable Connector Pin-Out

| Pin # | Port LED Signal                         |
|-------|-----------------------------------------|
| 1     | Port A bi-color LED, green + / orange - |
| 2     | Port A bi-color LED, green – / orange + |
| 3     | Port A green LED +                      |
| 4     | Port A green LED –                      |
| 5     | Port B bi-color LED, green + / orange - |
| 6     | Port B bi-color LED, green – / orange + |
| 7     | Port B green LED +                      |
| 8     | Port B green LED –                      |
| 9     | Port C bi-color LED, green + / orange - |
| 10    | Port C bi-color LED, green – / orange + |
| 11    | Port C green LED +                      |
| 12    | Port C green LED -                      |
| 13    | Port D bi-color LED, green + / orange - |
| 14    | Port D bi-color LED, green – / orange + |
| 15    | Port D green LED +                      |
| 16    | Port D green LED –                      |

# **3.3 User-Accessible Interconnects**

## 3.3.1 Keyboard and Mouse Ports

Two stacked PS/2 ports are provided to support both a keyboard and a mouse. Each port can support either a mouse or keyboard. Table 17 details the pin-out of the PS/2 connector.

#### Figure 22. Keyboard and Mouse Connectors



#### Table 17. Keyboard and Mouse Port Pin-Out

| Pin # | Signal                  |
|-------|-------------------------|
| 1     | KEYDAT (keyboard data)  |
| 2     | MSEDAT (mouse data)     |
| 3     | GND (ground)            |
| 4     | Fused Vcc (+5V)         |
| 5     | KEYCLK (keyboard clock) |
| 6     | MSECLK (mouse clock)    |

### **3.3.2 Serial Port B**

Two serial port connectors are provided, one on the front panel and one at the rear I/O, both using 8-pin RJ45 connectors. Both the front and rear serial port connectors connect to COM2. The user may connect to either the front or the rear serial port connector, but never to both. Figure 23 shows the serial port connector. Table 18 gives the pinout for the rear panel port and Table 19 gives the pinout of the front panel port.

An RJ45 connector is used to allow convenient connection to serial port concentrators, which typically use RJ45 connectors. For applications that require a DB-9 serial port connection, an adapter cable must be used.

Note that the connector pin-out differs slightly between the front-panel and rear-panel connectors, specifically in relation to Pin 6 and Pin 7.

On the front-panel serial port connector, Pin 6 is used as a serial port selection input. Grounding the EMP\_INUSE\_L signal that appears on Pin 6 disables the rear-panel serial port connection so that only the front-panel connection is active. This feature allows users to plug into and use the front-panel connector without regard for whether anything is connected to the rear-panel connector.

On the rear-panel serial port connector, Pin 7 can be configured by means of a jumper on the server board to carry either the DSR (Data Set Ready) signal or the DCD (Data Carrier Detect) signal as required by a particular serial port concentrator. (The frontpanel serial port connector always carries the DSR signal on Pin 7.) The default jumper
configuration selects the DSR signal, which conforms to the Cisco\* serial port standard. Refer to the *Intel*® *Server Board S5000PAL Technical Product Specification* for details about this jumper or if you need to change the DSR/DCD configuration.

## Figure 23. Serial Port Connector



#### Table 18. Rear Panel Serial Port (RJ45) Connector Pinout

| Pin # | Signal                                                                                                                                                                           | Description                              |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| 1     | RTS                                                                                                                                                                              | Request To Send                          |  |  |
| 2     | DTR                                                                                                                                                                              | Data Terminal Ready                      |  |  |
| 3     | TXD                                                                                                                                                                              | Transmit Data                            |  |  |
| 4     | GND                                                                                                                                                                              |                                          |  |  |
| 5     | RI                                                                                                                                                                               | Ring Indicator                           |  |  |
| 6     | RXD                                                                                                                                                                              | Receive Data                             |  |  |
| 7†    | DSR or<br>DCD                                                                                                                                                                    | Data Set Ready or<br>Data Carrier Detect |  |  |
| 8     | CTS                                                                                                                                                                              | Clear to Send                            |  |  |
| Note: | <sup>†</sup> A jumper block on the server board<br>determines whether DSR or DCD is routed to<br>pin 7. The server board has the jumper block<br>preconfigured with DSR enabled. |                                          |  |  |

The front panel board includes an RJ45 connector, which is the COM2 port. This RJ45 connector is accessible from behind the front bezel.

#### Table 19. Front Panel Serial Port (RJ45) Connector Pinout

| Pin # | Signal | Description                                                                              |  |
|-------|--------|------------------------------------------------------------------------------------------|--|
| 1     | RTS    | Request To Send                                                                          |  |
| 2     | DTR    | Data Terminal Ready                                                                      |  |
| 3     | TXD    | Transmit Data                                                                            |  |
| 4     | GND    | Ground                                                                                   |  |
| 5     | In Use | When grounded, indicates that the COM2 port is routed to the front panel RJ45 connector. |  |
| 6     | RXD    | Receive Data                                                                             |  |
| 7     | DSR    | Data Set Ready                                                                           |  |
| 8     | CTS    | Clear to Send                                                                            |  |

#### 3.3.3 Video Port

The video port interface is a standard VGA-compatible, 15-pin connector. On-board video is supplied by an ATI Rage XL video controller with 16 Mbytes of on-board video SGRAM. Figure 24 shows the video connector and Table 20 gives the pinout.

#### Figure 24. Video Connector



#### Table 20.Video Connector Pin-Out

| Pin # | Signal                        |
|-------|-------------------------------|
| 1     | Red (analog color signal R)   |
| 2     | Green (analog color signal G) |
| 3     | Blue (analog color signal B)  |
| 4     | No connection                 |
| 5     | GND                           |
| 6     | GND                           |
| 7     | GND                           |
| 8     | GND                           |
| 9     | Fused Vcc (+5V)               |
| 10    | GND                           |
| 11    | No connection                 |
| 12    | DDCDAT                        |
| 13    | HSYNC (horizontal sync)       |
| 14    | VSYNC (vertical sync)         |
| 15    | DDCCLK                        |

# 3.3.4 Universal Serial Bus (USB) Interface

The Intel<sup>®</sup> Server Board T5000PAL provides USB port support. USB ports 0 and 1 are brought out at the rear of the unit on the server board, and USB ports 2 and 3 are routed to the SFP board. USB port 2 is brought to the front of the system and is accessible when the front bezel is removed. USB port 3 is used internally.

The built-in USB ports permit direct connection of up to three USB peripherals without the need for an external hub. If more devices are required, an external hub can be connected to any of the built-in ports. Figure 25 shows an external USB connector and Table 21 gives the pinout.

#### Figure 25. External USB Connector



#### Table 21. USB Connector Pin-Out

| Pin # | Signal                                                         |
|-------|----------------------------------------------------------------|
| 1     | Fused Vcc (+5V w/over-current monitor of ports 0, 1, 2, and 3) |
| 2     | DATAL0 (differential data line paired with DATAH0)             |
| 3     | DATAH0 (differential data line paired with DATAL0)             |
| 4     | GND                                                            |

## 3.3.5 Ethernet Connectors

The Intel<sup>®</sup> Server Board T5000PAL provides two NIC RJ45 connectors oriented side by side on the back edge of the board and accessible at the rear I/O panel. Figure 26 shows the Ethernet connector and Table 22 gives the pinout, which is identical for each connector.

For each Ethernet connector there are two status indicator LEDs integrated in the same assembly as the connector itself, a green LED to the left of the connector and a bi-color LED to the right of the connector.

The green LED indicates the connection status for each port. If the port is connected to a network but there is no current activity, the green LED is continuously illuminated. When there is activity on the connected network the green LED blinks.

The bi-color LED indicates the connection speed of the network connection. If the bicolor LED is not lit but the green LED is either lit or blinking, the port's connection speed is 10 Mbps. If the bi-color LED shows a solid green indication, the port's connection speed is 100 Mbps. If the bi-color LED shows a solid amber indication, the port's connection speed is 1 Gbps.

#### Figure 26. Ethernet Connectors



| Pin # | Signal Name | Description              |  |
|-------|-------------|--------------------------|--|
| 1     | BI_DA+      | Bi-directional pair A, + |  |
| 2     | BI_DA-      | Bi-directional pair A, - |  |
| 3     | BI_DB+      | Bi-directional pair B, + |  |
| 4     | BI_DC+      | Bi-directional pair C, + |  |
| 5     | BI_DC-      | Bi-directional pair C, - |  |
| 6     | BI_DB-      | Bi-directional pair B, - |  |
| 7     | BI_DD+      | Bi-directional pair D, + |  |
| 8     | BI_DD-      | Bi-directional pair D, - |  |

#### Table 22.Ethernet Connector Pin-Out

## 3.3.6 External Front Panel 4X GbE NIC Connectors

Up to two optional Intel® PRO/1000 AT Quad Port Bypass Adapters (PCI add-in cards) can be installed in the IP Network Server NSC2U. A cable assembly routes the four Ethernet ports to a connector that attaches to the front panel. Figure 21, "Front NIC 4x Ethernet PCI Card Cable Physical Details" on page 34 shows the front panel Ethernet connectors.

*Note:* The maximum length of Ethernet cable runs that connect to front panel 4x GbE NIC ports is 50m.

## 3.3.7 External SAS 4X Hard Disk Drive Connector

The IP Network Server NSC2U provides an external SAS 4X hard drive connector. The SAS 4X external connector is illustrated in Figure 27, and the pin-out for the connector is shown in Table 23.

#### Figure 27. External SAS 4X Hard Disk Drive Connector



#### Table 23. External SAS 4X Hard Disk Drive Connector Pin-Out

| Pin | Signal    | Pin | Signal    |
|-----|-----------|-----|-----------|
| S1  | SAS_RX4_P | S2  | SAS_RX4_N |
| S3  | SAS_RX5_P | S4  | SAS_RX5_N |
| S5  | SAS_RX6_P | S6  | SAS_RX6_N |
| S7  | SAS_RX7_P | S8  | SAS_RX7_N |
| S9  | SAS_TX7_N | S10 | SAS_TX7_P |

| Pin | Signal    | Pin | Signal    |
|-----|-----------|-----|-----------|
| S11 | SAS_TX6_N | S12 | SAS_TX6_P |
| S13 | SAS_TX5_N | S14 | SAS_TX5_P |
| S15 | SAS_TX4_N | S16 | SAS_TX4_P |
| G1  | GND       | G2  | GND       |
| G3  | GND       | G4  | GND       |
| G5  | GND       | G6  | GND       |
| G7  | GND       | G8  | GND       |
| G9  | GND       |     |           |

#### Table 23. External SAS 4X Hard Disk Drive Connector Pin-Out (Continued)

# 3.3.8 AC Power Input for AC-Input Power Supply

A single IEC320-C13 receptacle is provided at the rear of each AC-input power module installed in the system. The use of an appropriately sized power cord and AC main is recommended. See Chapter 7, "Power Subsystem", for system voltage, frequency, and current draw specifications.

#### Figure 28. AC Power Input Connector



# 3.3.9 DC Power Input for DC-Input Power Supply

A pluggable DC power terminal block is used to provide the DC-input power connection to each of the DC-input power supply modules that are configured in the DC power supply cage. It is recommended to use appropriately sized power wire and DC main.See Chapter 7, "Power Subsystem" for system DC voltage and current draw specifications.

#### Figure 29. DC Power Input Connector



# 4 SAS Front Panel (SFP) Board

This chapter describes the basic functions and interface requirements of the SAS Front Panel (SFP) system board designed for the Kontron IP Network Server NSC2U.

This chapter is organized in the following sections:

- Features
- Overview
- Component Location
- Power Distribution
- I/O Processor Subsystem
- SAS Controller (LSISAS1068)
- Clock Generation/Distribution
- Programmable Logic Device (PLD)
- Hardware RAID
- Software RAID
- Debug Features
- Power Good Circuit
- Reset Control
- Connector Information

## 4.1 Features

SFP Board features include:

- · four switches to control power-on, reset, NMI, and the system ID
- one system status LED that indicates the presence of DC power in the system
- two system activity LEDs that indicate power-on and NIC activity
- one dual-color, hard drive LED that indicates activity/fault status for all internal SAS drives
- one system ID LED that can be controlled remotely or by the system ID switch
- one RS-232 front panel port
- one USB2.0 front panel port
- one USB2.0 interface to the eUSB SSD board, which provides local memory storage
- a single flex cable connection to the SAS backplane to support the interface to six independent 2.5-inch SAS hard drives
- a socket for a hardware RAID key, required to enable hardware RAID
- a socket for a DDR2 mini-DIMM that provides data caching for hardware RAID

- a connector for the Intelligent Battery Backup Unit (IBBU) that allows the contents of the DDR2 mini-DIMM to be preserved if power falls below specifications.
- four fan connectors to provide power, control, and monitoring for the four cooling fans
- four fan fault LEDs (not visible on front panel; for diagnostics purposes only)

# 4.2 Overview

The SAS Front Panel (SFP) provides SAS support for the Kontron IP Network Server NSC2U host system. The SFP board adds SAS support to the host system and provides support for hardware RAID 0/1/10/5 and software RAID 0/1/10.

The NSC2U Server SFP provides the following main categories of functions for the system:

- Cascaded Power Conversion
  - +12V to +1.8V
  - +12V to +1.5V
  - +1.8V to +1.2V
  - +3.3V to +1.35V
  - 5V\_stby to 3.3V\_stby
  - 5V\_stby to VbatRaid
  - +1.8V to VbatRaid
- Six SAS ports (to SAS Backplane)
  - 3.0 Gbps link rate
  - 1.5 Gbps link rate
- RAID 0/1/10 support
  - LSI Logic\* LSISAS1068, which provides RAID 0/1/10
- RAID 5 support
  - hardware support via the Intel® 80333 I/O processor device
  - Intelligent Battery Back-up Unit (IBBU) connector; provides power for DIMM in the case of power failure
  - hardware RAID key socket; a hardware RAID key is required to enabling RAID 5 support
  - DDR2 SDRAM DIMM socket; supports up to 1 Gbyte memory modules
- Buzzer
  - audible indication of drive failure

Figure 30 presents the functional block diagram of the SAS Front Panel board.



#### Figure 30. SAS Front Panel Board Functional Block Diagram

# 4.3 Component Location

Figure 31 shows the placement of the major components and connectors on the SFP board. Figure 32 show the locations of front panel LED indicators, switches and connectors.



#### Figure 31. SFP Board Component Locations

#### Figure 32. SFP Board LED Indicators, Switches and Front Panel Connectors



## 4.4 **Power Distribution**

This section details the SFP power distribution. This consists of power provided by the Power Distribution Board (PDB) and the D2D and linear on-board regulators:

- the +12V board input is cascaded to +1.8V, +1.5V, +1.35V, +1.2V and passed through to the backplane.
- the +3.3V board input is converted to +1.35V and passed through to the backplane.
- the +5V\_Standby board input is converted to +3V\_Standby and VBAT\_RAID (1.8V\_Standby).
- the +5V board input is passed through to the backplane.







## 4.4.1 Battery Backup Power Control

The battery backup power controller determines the appropriate source for the VBAT\_RAID power rail from several possible sources, and activates that source according to the following rules:

- During normal operation, the 1.8V power rail supplies VBAT\_RAID.
- If main system power is turned off and standby power is available, the 5V to 1.8V linear regulator supplies VBAT\_RAID.
- If all system power fails and the DDR DIMM has critical data stored, the Intelligent Battery Backup Unit (IBBU) supplies VBAT\_RAID.

# 4.4.2 12V to 1.8V VRM

The 12V to 1.8V VRM converts the +12V supply to +1.8V. The generated +1.8V is used by the Intel<sup>®</sup> 80333 I/O processor, LSISAS1068, DDR2, and PLD.

- output rated at +1.8V ±2% at a maximum of 6A continuous
- over current protection

- voltage regulation starts when the input voltage exceeds ~7.9V
- DOSA standard footprint
- D2D can be inhibited with the ENABLE\_P1V8\_N signal (controlled by the PLD)

# 4.4.3 12V to 1.5V VRM

The 12V to 1.5V VRM converts the +12V supply to +1.5V. The generated +1.5V is used by the Intel  $^{\textcircled{R}}$  80333 I/O processor.

- output rated at +1.5V ±2% at a maximum of 6A continuous
- over current protection
- voltage regulation starts when the input voltage exceeds ~7.9V
- DOSA standard footprint
- D2D can be inhibited with the ENABLE\_P1V5\_N signal (controlled by the PLD)

## 4.4.4 3.3V to 1.35V DC-to-DC Linear Converter

The 3.3V to 1.35V D2D converts the +3.3V supply to +1.35V. The generated +1.35V is used by the Intel^® 80333 I/O processor.

- output rated at +1.35V ±2% at a maximum of 3A continuous
- over current and over temperature protection
- D2D can be inhibited with the P1V35\_ENABLE\_N signal (controlled by the PLD)

#### 4.4.5 **1.8V to 1.2V DC-to-DC Linear Converter**

The 1.8V to 1.2V D2D converts the +1.8V supply to +1.2V. The generated +1.35V is used by the LSISAS1068.

- output rated at +1.2V ±2% at a maximum of 3A continuous
- over current and over temperature protection
- D2D can be inhibited with the P1V2\_ENABLE\_N signal (controlled by the PLD)

# 4.5 I/O Processor Subsystem

This section provides a detailed description of the IP Network Server NSC2U SFP board I/O processor (Intel<sup>®</sup> 80333 I/O processor) subsystem. The I/O Processor subsystem has two major functions:

- acts as a PCI-X\* to PCI Express\* bridge
- provides RAID 5 functionality

## 4.5.1 PCI-X to PCI Express Bridge

The I/O processor acts as PCI-X to PCI Express bridge. This allows the SFP board to attach to the server board's PCI Express interface and use existing PCI-X SAS controllers.

## 4.5.2 RAID Controller

The I/O processor adds hardware RAID capabilities to the IP Network Server NSC2U SFP board.

When in RAID mode, the following parts of the I/O processor subsystem interact:

- DDR2
- Intel<sup>®</sup> 80333 I/O processor
- flash memory
- hardware RAID key
- PCI-X buses

The following topics describe each part and its role.





## 4.5.3 I/O Processor

The IP Network Server NSC2U SFP architecture is based around the Intel $^{\textcircled{8}}$  80333 I/O processor. The 500 MHz core of the 80333 processor controls:

- two, 133 MHz, 64-bit, PCI-X buses
- a x8 PCI Express interface
- a ROM bus
- a DDR2, 400 MHz SDRAM bus

The 80333 processor also provides two UARTs,  $I^2C$  bus, and GPIOs.

In PCI-X to PCI Express bridge mode, the 80333 processor is seen by the system as a bridge. This allows the LSISAS1068 to provide SAS support and software RAID support for the system.

In hardware RAID mode, the 80333 processor provides transparent hardware support for RAID 0/1/10/5. The 80333 processor provides virtual disk arrays for the system to use. These disk arrays can be in any of the supported RAID modes. The 80333 processor's DDR2 connector provides flexible cache support. The cache support can speed up transaction timing, depending on the cache configuration. When in RAID mode, the 80333 processor boots from flash memory and loads configuration information from the NVRAM.

#### 4.5.4 Flash Memory

A 32 Mbit flash memory contains the executable code for the 80333 processor and is only used when the 80333 processor is in hardware RAID 5 mode.

#### 4.5.5 **NVRAM**

The NVRAM is 256 Kbits of accessible static RAM. The NVRAM is used to store the 80333 processor's configuration information and disk drive RAID configuration information.

#### 4.5.6 PCI-X Buses

The PCI-X bus interface is 64 bits and runs at 133 MHz. Only one of the 80333 processor's PCI-X buses is used. The LSISAS1068 is the only device on the 80333 processor's PCI-X bus.

#### 4.5.7 PCI Express Bus

The PCI Express bus interfaces the 80333 processor to the system via the Baseboard Bridge Adapter. The PCI Express bus is a x4 configuration. The 80333 processor also supports x1 and x8 modes.

#### 4.5.8 DDR2 Bus

The 80333 processor's DDR2 bus runs at 400 MHz and supports 256 Mbit, 512 Mbit, and 1 Gbit registered DIMMs. The DDR2 bus is used to provide data caching when the 80333 processor is operating in hardware RAID mode.

#### 4.5.9 Intelligent Battery Backup Unit (IBBU)

The battery backup allows the contents of the DIMM to be preserved if power drops below specifications. The DIMM uses the VBAT\_RAID 1.8V supply as supplied by either P1V8, P5\_STBY, or the RAID smart battery (battery backup module).

Under normal operation, full power (P1V8) is applied to VBAT\_RAID and is converted from 12V to 1.8V by a separate PWM-controlled switching regulator. If this rail drops out, VBAT\_RAID is powered from the system power supply standby rail (P3V3\_STBY) through a SC1565 LDO regulator. If P3V3\_STBY\_PWRGD is deasserted, the RAID battery takes over as the VBAT\_RAID source (if cache data is present in the DIMM).

When the 80333 processor senses power has dropped below 2.96V (Powergood deasserts) and its POWER\_DELAY signal is asserted, it initiates a power fail sequence that safely puts the ROMB DIMM into self-refresh state. The POWER\_DELAY circuit generates enough of a delay to allow the 80333 processor to complete its power fail

sequence. After the power fail sequence completes, additional logic (powered by VBAT\_RAID) holds the DIMM's clock enable signals low to keep the DIMM in self-refresh mode. Once power is restored, data from the DIMM can be written to the disk array.

## 4.5.10 **GPIOs**

The 80333 processor has eight GPIOs that handle various input and output functions. The GPIOs are used to control the IBBU, system indicators, and debug support.

#### 4.5.11 Hardware RAID Key

The hardware RAID key is a preprogrammed serial device used to enable hardware RAID.

# 4.5.12 I<sup>2</sup>C

The 80333 processor's  $I^2C$  bus allows the processor to communicate with the system's BMC and the IBBU. The  $I^2C$  bus going to the system BMC is isolated when power is not provided to the 80333 processor.

#### Figure 35. I<sup>2</sup>C Circuit



# 4.6 SAS Controller (LSISAS1068)

The LSISAS1068 is a PCI-X SAS controller. The LSISAS1068 provides eight, 3 Gbps SAS links.

During normal operation, the LSISAS1068 boots from its flash. The LSISAS1068 has an assigned SAS ID on the IP Network Server NSC2U.

#### Figure 36. LSISAS1068 Circuit



## 4.6.1 **PCI-X Interface**

The LSISAS1068 communicates with the 80333 processor over a 133 MHz, 64-bit PCI-  $\rm X$  bus.

## 4.6.2 SAS Interface

The LSISAS1068 Internal SAS interface consists of eight, 3 Gbps links. The SAS interface connects to a system backplane through a flex circuit cable. All supported hardware and software RAID modes are available on the SAS interface.

#### 4.6.3 Flash Memory

A 16-Mbit flash contains the LSISAS1068's executable code. The LSISAS1068 boots from the flash when the IP Network Server NSC2U SFP board is operating in SAS mode.

#### 4.6.4 I<sup>2</sup>C

The LSISAS1068's  $\mathrm{I}^2\mathrm{C}$  bus allows the system's BMC to communicate with the LSISAS1068.

#### 4.6.5 Indicator Buzzer

When the IP Network Server NSC2U SFP board is in RAID mode, the 80333 processor generates a series of beep codes to indicate failure modes. The 80333 processor indicates the buzzer state via a GPIO. The SFP board's PLD takes the GPIO input and creates a 2 kHz square wave to activate the buzzer.

# 4.7 Clock Generation/Distribution

The SFP board uses several on board clock sources and a system generated 100 MHz clock (PCI express). Figure 37 shows the clock generation and distribution circuit.



#### Figure 37. SFP Board Clock Generation and Distribution Circuit

## 4.7.1 75 MHz Sourced Clock

The LSISAS1068 uses a differential 75 MHz clock, sourced from the 75 MHz oscillator.

#### 4.7.2 133 MHz Sourced Clock

The 80333 processor generates a 133 MHz clock for the PCI-X bus. Skew is controlled by the LSISAS1068 via a feedback circuit.

### 4.7.3 200 MHz Sourced Clock

The 80333 processor generates a 200 MHz clock for the DDR2 interface.

## 4.7.4 100 MHz Sourced Clock

The server board provides a 100 MHz clock for the 80333 processor.

## 4.7.5 PLD Sourced Clock

Uses an external RC circuits and Schmitt trigger to generate this clock.

# 4.8 **Programmable Logic Device (PLD)**

The PLD on the IP Network Server NSC2U SFP is used for:

- board power/reset control
- board interlock control
- buzzer control
- IBBU control
- various miscellaneous signals

The PLD can only be updated via a header (unpopulated) on the IP Network Server NSC2U SFP board.

#### 4.8.1 **Power-on/Reset**

A state machine ensures that the voltage sequencing and reset logic comes up as expected.

## 4.8.2 Buzzer Control

The PLD uses the PLD clock and the AUDIOTRIG signal to generate a 2.4 kHz signal to drive the buzzer. AUDIOTRIG is generated from GPIO3 on the 80333 processor.

## 4.8.3 IBBU Control

The PLD uses the PLD clock to generate the IBBU control signals, BBE and IBBU\_BBSTROBE. These signals are used to notify the IBBU that critical data (dirty) is in the DIMM and that the IBBU will have to supply VBAT\_RAID if power were to fail.

# 4.9 Hardware RAID

The IP Network Server NSC2U SFP supports hardware RAID levels 0/1/10/5. To use hardware RAID, the following conditions are required:

- The hardware RAID key, the RAID mini-DIMM, and the IBBU must be installed.
- The desired RAID level must be selected in the BIOS.

For information on setting up hardware RAID, see the Intel<sup>®</sup> Embedded Server RAID Technology II, Intel<sup>®</sup> Integrated Server RAID, and Intel<sup>®</sup> RAID Controllers SRCSAS18E and SRCSAS144E Software User's Guide at

http://www.intel.com/support/motherboards/server/sb/CS-022358.htm. This manual is also available on the *Deployment Assistant* CD.

## 4.9.1 Description

The IP Network Server NSC2U SFP board supports a RAID On MotherBoard (ROMB) solution via the 80333 processor in conjunction with the LSISAS1068 SCSI controller.

To activate this feature, a physical RAID Activation Key is available from Kontron as an option. This key contains a configuration code to unlock specific features to support the LSI Logic MegaRAID\* solution.

Support for a DDR-2 DIMM serves as memory for the IOP and as a disk cache to store write data to the drives. If power to the 80333 processor drops below specifications, RAIDsmart battery maintains the contents of the DIMM by keeping the DIMM in self-refresh mode until power is restored. After power is restored, the data can be safely written to drives, maintaining the integrity of the disk array.

## 4.9.2 DDR-2 Support

The IP Network Server NSC2U SFP board has a single, 244-pin, DDR2 Mini-DIMM slot that can be used to add local memory for the I/O processor. This increases performance by allowing the caching of writes to the disk array. Please check with the current supported memory list. Compatible DIMMS are:

- DDR-2 400 MHz SDRAM only
- registered DIMMs only
- 72-bit ECC DIMMs only (64-bit data bus width and 8-bit ECC)

## 4.9.3 80333 I/O Processor NVRAM

A 32 Kbyte NVRAM component is connected to the Peripheral Bus Interface (PBI) of the 80333 processor. This NVRAM contains board and disk drive setup configuration data and other system information.

The Server Board Set SE8500HW4 uses a 32 Kbyte (32 K x 8-bit) Simtek\* STK14D88 NVRAM component and is powered by the system's main +3.3V rail.

#### 4.9.4 ROMB Battery Backup

The battery backup allows the contents of the DIMM to be preserved if power drops below specifications. See Section 4.5.9, "Intelligent Battery Backup Unit (IBBU)" on page 49 for more information.

## 4.10 Software RAID

The IP Network Server NSC2U SFP supports software RAID levels 0/1/10. To use software RAID the following conditions are required:

- The hardware RAID key **must not** be installed. The RAID mini-DIMM and the IBBU (which are required for hardware RAID), if installed, do not affect the ability to use software RAID.
- Software RAID must be enabled by setting the "software raid enabled" option in the BIOS.

The "software raid enabled" option sets the RAID\_MODE signal necessary to distinguish between straight SAS mode and software RAID mode.

#### 4.10.1 80333 Processor in Software RAID

The 80333 processor serves as a PCI Express\* (PCIe\*) to PCI-X\* bridge supporting transfer rates of up to 3 Gbytes/sec. It is connected to the baseboard's x4 PCI Express link and includes fully functional RAID support. However, the 80333 processor serves as a bridge only in software RAID mode.

# 4.10.2 LSISAS1068 in Software RAID

The LSISAS1068 controller resides on PCI-X bus, Channel A of the 80333 processor supporting transfer rates of up to 3 Gbps. The LSISAS1068 controller includes an Address Translation Unit (ATU) supporting transactions between PCI address space and 80333 processor address space. The LSISAS1068 controller includes its own flash ROM to support SAS only software RAID. Software RAID levels supported include 0/1/10.

# 4.11 Debug Features

## 4.11.1 UART

The IP Network Server NSC2U SFP board provides a 4-pin UART connector at location J3B1 to help in the bring up and debug of the 80333I/O processor firmware code. This connector provides connections to the GPIO0\_RXD and GPIO1\_TXD pins on the 80333 processor.

# 4.12 Power Good Circuit

"Power Good" are positive logic signals reflecting the status of various power rails.

#### 4.12.1 **Power Good Outputs**

"Power Good" outputs allow the IP Network Server NSC2U SFP board to identify when to come out of reset. The worst case ranges take into account component tolerances and the range represents the smallest expected range.

#### Table 24.Power Good Table

| Voltage | Signal Name     | Voltage Range for Good Voltage |
|---------|-----------------|--------------------------------|
| +3.3V   | P3V3_STBY_PWRGD | ±10% (2.97V to 3.63V)          |
| +1.8V   | P1V8_PWRGOOD    | +12% /-11% (1.62V to 1.98V)    |
| +1.5V   | P1V5_PWRGOOD    | ±10% (1.35V to 1.64V)          |
| +1.35V  | P1V35_PWRGOOD   | +9% /-10% (1.21V to 1.48V)     |
| +1.2V   | P1V2_PWRGOOD    | +13%/-12% (1.06V to 1.35V)     |

#### 4.12.2 Power Good Inputs

The PCI\_PWRGOOD signal indicates that the +3.3V power rail supplied by the server board is good.

# 4.13 Reset Control

Board resets are controlled by the Programmable Logic Device (PLD) and are generated off of the voltage "Power Good" signals and the PERST\_N PCIe signal.

The Brock\_RST\_N signal must be held off for 1 ms after the 80333 processor power good signal goes active.

Figure 38. Reset Control



# 4.14 Connector Information

# 4.14.1 Baseboard Bridge Connector (J2C1)

The Baseboard Bridge Connector carries signals between the SFP Board and the server board. Table 25 gives the pinout for the Baseboard Bridge connector.

 Table 25.
 Baseboard Bridge Connector Pinout (Sheet 1 of 3)

| -     |                   | 1   |                   |  |
|-------|-------------------|-----|-------------------|--|
| Pin # | Signal Name       | Pin | Signal Name       |  |
| A1    | FAN1_TACH         | B1  | FAN2_TACH         |  |
| A2    | FAN3_TACH         | B2  | FAN4_TACH         |  |
| A3    | NC_FAN_TACH5      | B3  | NC_FAN_TACH6      |  |
| A4    | FAN7_TACH         | B4  | FAN8_TACH         |  |
| A5    | NC_FAN_TACH9      | B5  | NC_FAN_TACH10     |  |
| A6    | FAN_CPU2_PWM      | B6  | GND               |  |
| A7    | GND               | B7  | FAN_IO_PWM        |  |
| A8    | FAN_CPU1_PWM      | B8  | LED_FAN4_FAULT    |  |
| A9    | NC_LED_FAN1_FAULT | B9  | NC_LED_FAN_FAULT5 |  |
| A10   | NC_LED_FAN2_FAULT | B10 | NC_LED_FAN_FAULT6 |  |
| A11   | LED_FAN3_FAULT    | B11 | GND               |  |
| A12   | FP_TEMP_PWM       | B12 | NC_V_RED_CONN_FP  |  |

| Pin # | Signal Name         | Pin | Signal Name        |  |
|-------|---------------------|-----|--------------------|--|
| A13   | FP_ID_LED_N         | B13 | NC_V_GREEN_CONN_FP |  |
| A14   | R_NC_P3V3STBY       | B14 | NC_V_BLUE_CONN_FP  |  |
| A15   | FP_PWR_LED_N        | B15 | GND                |  |
| A16   | R_NC_P3V3           | B16 | NC_V_VSYNC2_BUF_FP |  |
| A17   | BB_HDD_ACT_N        | B17 | NC_V_HSYNC2_BUF_FP |  |
| A18   | GND                 | B18 | GND                |  |
| A19   | SMB_IPMB_5VSB_CLK   | B19 | SMB_PBI_3VSB_CLK   |  |
| A20   | SMB_IPMB_5VSB_DAT   | B20 | SMB_PBI_3VSB_DAT   |  |
| A21   | GND                 | B21 | GND                |  |
| A22   | FP_ID_BTN_N         | B22 | LED_STATUS_AMBER_N |  |
| A23   | FP_PWR_BTN_N        | B23 | LED_NIC2_ACT_N     |  |
| A24   | FP_RST_BTN_N        | B24 | NC_LED_NIC2_LINK_N |  |
| A25   | FP_NMI_BTN_N        | B25 | LED_STATUS_GREEN_N |  |
| A26   | GND                 | B26 | LED_NIC1_ACT_N     |  |
| A27   | USB0_FP_CONN_DN     | B27 | NC_LED_NIC1_LINK_N |  |
| A28   | USB0_FP_CONN_DP     | B28 | NC_USB2_ESB_OC_N   |  |
| A29   | GND                 | B29 | GND                |  |
| A30   | USB_FP_OC_FLT_N     | B30 | NC_USB2_ESB_DN     |  |
| A31   | USB_SYSCON_OC_FLT_N | B31 | NC_USB2_ESB_DP     |  |
| A32   | GND                 | B32 | GND                |  |
| A33   | USB1_SYSCON_DN      | B33 | SGPIO_CLOCK        |  |
| A34   | USB1_SYSCON_DP      | B34 | SGPIO_LOAD         |  |
| A35   | GND                 | B35 | SGPIO_DATAOUT0     |  |
| A36   | FAN_PRSNT2_N        | B36 | SGPIO_DATAOUT1     |  |
| A37   | FAN_PRSNT3_N        | B37 | GND                |  |
| A38   | FAN_PRSNT1_N        | B38 | CLK_100M_DOBSON_P  |  |
| A39   | GND                 | B39 | CLK_100M_DOBSON_N  |  |
| A40   | EXP_NB_0P           | B40 | GND                |  |
| A41   | EXP_NB_ON           | B41 | SW_RAID_MODE       |  |
| A42   | GND                 | B42 | GND                |  |
| A43   | IBUTTON_PRESENT     | B43 | EXP_SB_0P          |  |
| A44   | GND                 | B44 | EXP_SB_ON          |  |
| A45   | EXP_NB_1P           | B45 | GND                |  |
| A46   | EXP_NB_1N           | B46 | PCIE_PWRGOOD       |  |
| A47   | GND                 | B47 | GND                |  |
| A48   | FAN_PRSNT4_N        | B48 | EXP_SB_1P          |  |
| A49   | GND                 | B49 | EXP_SB_1N          |  |
| A50   | EXP_NB_2P           | B50 | GND                |  |
| A51   | EXP_NB_2N           | B51 | FAN_PRSNT5_N       |  |
| A52   | GND                 | B52 | GND                |  |

# Table 25.Baseboard Bridge Connector Pinout (Sheet 2 of 3)

| Pin # | Signal Name                 | Pin | Signal Name |
|-------|-----------------------------|-----|-------------|
| A53   | FAN_PRSNT6_N                | B53 | EXP_SB_2P   |
| A54   | GND                         | B54 | EXP_SB_2N   |
| A55   | EXP_NB_3P                   | B55 | GND         |
| A56   | EXP_NB_3N                   | B56 | PE_WAKE_N   |
| A57   | GND                         | B57 | GND         |
| A58   | PD_BRIDGE_PRSNT_N           | B58 | EXP_SB_3P   |
| A59   | NC_SMB_SENSOR_3V3SB_DAT_BUF | B59 | EXP_SB_3N   |
| A60   | NC_SMB_SENSOR_3V3SB_CLK_BUF | B60 | GND         |

#### Table 25. Baseboard Bridge Connector Pinout (Sheet 3 of 3)

# 4.14.2 Intelligent Battery Backup Unit Connector (J8B2)

The Intelligent Battery Backup Unit (IBBU) connector carries signals between the IP Network Server NSC2U SFP board and the IBBU. Table 26 gives the pinout for the IBBU connector.

#### Table 26. Intelligent Battery Backup Unit Connector (J8B2) Pinout

| Pin # | Signal Name | Pin # | Signal Name |
|-------|-------------|-------|-------------|
| 1     | 12V         | 2     | GND         |
| 3     | NC          | 4     | GND         |
| 5     | VBAT_RAID   | 6     | GND         |
| 7     | 3.3V        | 8     | GND         |
| 9     | VBAT_RAID   | 10    | GND         |
| 11    | RESET_N     | 12    | GND         |
| 13    | SCK         | 14    | GND         |
| 15    | SDA         | 16    | PFAIL_N     |
| 17    | DDR_SEL     | 18    | BBE         |
| 19    | BBSTROBE    | 20    | STATUS      |

# 4.14.3 DDR2 DIMM Connector (J6D1)

Table 27 gives the pinout for the DDR2 DIMM connector.

#### Table 27.DDR2 DIMM Connector (J6D1) Pinout (Sheet 1 of 3)

| ſ | Pin | Signal Name  | Pin | Signal Name | Pin | Signal Name | Pin | Signal Name    |
|---|-----|--------------|-----|-------------|-----|-------------|-----|----------------|
| Γ | 1   | DDR_VREF     | 62  | DDR_MA<4>   | 123 | GND         | 184 | VBAT_RAID      |
|   | 2   | GND          | 63  | VBAT_RAID   | 124 | DDR_DQ<4>   | 185 | DDR_MA<3>      |
|   | 3   | DDR_DQ<0>    | 64  | DDR_MA<2>   | 125 | DDR_DQ<5>   | 186 | DDR_MA<1>      |
|   | 4   | DDR_DQ<1>    | 65  | VBAT_RAID   | 126 | GND         | 187 | VBAT_RAID      |
|   | 5   | GND          | 66  | GND         | 127 | DDR_DM<0>   | 188 | MCLK0_200MHZ_P |
|   | 6   | DDR_DQS_N<0> | 67  | GND         | 128 | NC_DDR_128  | 189 | MCLK0_200MHZ_N |

| Pin | Signal Name  | Pin | Signal Name  | Pin | Signal Name | Pin | Signal Name |
|-----|--------------|-----|--------------|-----|-------------|-----|-------------|
| 7   | DDR_DQS_P<0> | 68  | DDR_PAR_IN   | 129 | GND         | 190 | VBAT_RAID   |
| 8   | GND          | 69  | VBAT_RAID    | 130 | DDR_DQ<6>   | 191 | DDR_MA<0>   |
| 9   | DDR_DQ<2>    | 70  | DDR_MA<10>   | 131 | DDR_DQ<7>   | 192 | DDR_BA1     |
| 10  | DDR_DQ<3>    | 71  | DDR_BA0      | 132 | GND         | 193 | VBAT_RAID   |
| 11  | GND          | 72  | VBAT_RAID    | 133 | DDR_DQ<12>  | 194 | DDR_RAS_N   |
| 12  | DDR_DQ<8>    | 73  | DDR_WE_N     | 134 | DDR_DQ<13>  | 195 | VBAT_RAID   |
| 13  | DDR_DQ<9>    | 74  | VBAT_RAID    | 135 | GND         | 196 | DDR_CS0_N   |
| 14  | GND          | 75  | DDR_CAS_N    | 136 | DDR_DM<1>   | 197 | VBAT_RAID   |
| 15  | DDR_DQS_N<1> | 76  | VBAT_RAID    | 137 | NC_DDR_137  | 198 | DDR_ODT0    |
| 16  | DDR_DQS_P<1> | 77  | NC_DDR_77    | 138 | GND         | 199 | DDR_MA<13>  |
| 17  | GND          | 78  | NC_DDR_78    | 139 | NC_DDR_139  | 200 | VBAT_RAID   |
| 18  | DDR_M_RST_N  | 79  | VBAT_RAID    | 140 | NC_DDR_140  | 201 | NC_DDR_201  |
| 19  | NC_DDR_19    | 80  | NC_DDR_80    | 141 | GND         | 202 | GND         |
| 20  | GND          | 81  | GND          | 142 | DDR_DQ<14>  | 203 | DDR_DQ<36>  |
| 21  | DDR_DQ<10>   | 82  | DDR_DQ<32>   | 143 | DDR_DQ<15>  | 204 | DDR_DQ<37>  |
| 22  | DDR_DQ<11>   | 83  | DDR_DQ<33>   | 144 | GND         | 205 | GND         |
| 23  | GND          | 84  | GND          | 145 | DDR_DQ<20>  | 206 | DDR_DM<4>   |
| 24  | DDR_DQ<16>   | 85  | DDR_DQS_N<4> | 146 | DDR_DQ<21>  | 207 | NC_DDR_207  |
| 25  | DDR_DQ<17>   | 86  | DDR_DQS_P<4> | 147 | GND         | 208 | GND         |
| 26  | GND          | 87  | GND          | 148 | DDR_DM<2>   | 209 | DDR_DQ<38>  |
| 27  | DDR_DQS_N<2> | 88  | DDR_DQ<34>   | 149 | NC_DDR_149  | 210 | DDR_DQ<39>  |
| 28  | DDR_DQS_P<2> | 89  | DDR_DQ<35>   | 150 | GND         | 211 | GND         |
| 29  | GND          | 90  | GND          | 151 | DDR_DQ<22>  | 212 | DDR_DQ<44>  |
| 30  | DDR_DQ<18>   | 91  | DDR_DQ<40>   | 152 | DDR_DQ<23>  | 213 | DDR_DQ<45>  |
| 31  | DDR_DQ<19>   | 92  | DDR_DQ<41>   | 153 | GND         | 214 | GND         |
| 32  | GND          | 93  | GND          | 154 | DDR_DQ<28>  | 215 | DDR_DM<5>   |
| 33  | DDR_DQ<24>   | 94  | DDR_DQS_N<5> | 155 | DDR_DQ<29>  | 216 | NC_DDR_216  |
| 34  | DDR_DQ<25>   | 95  | DDR_DQS_P<5> | 156 | GND         | 217 | GND         |
| 35  | GND          | 96  | GND          | 157 | DDR_DM<3>   | 218 | DDR_DQ<46>  |
| 36  | DDR_DQS_N<3> | 97  | DDR_DQ<42>   | 158 | NC_DDR_158  | 219 | DDR_DQ<47>  |
| 37  | DDR_DQS_P<3> | 98  | DDR_DQ<43>   | 159 | GND         | 220 | GND         |
| 38  | GND          | 99  | GND          | 160 | DDR_DQ<30>  | 221 | DDR_DQ<52>  |
| 39  | DDR_DQ<26>   | 100 | DDR_DQ<48>   | 161 | DDR_DQ<31>  | 222 | DDR_DQ<53>  |
| 40  | DDR_DQ<27>   | 101 | DDR_DQ<49>   | 162 | GND         | 223 | GND         |
| 41  | GND          | 102 | GND          | 163 | DDR_CB<4>   | 224 | NC_DDR_224  |
| 42  | DDR_CB<0>    | 103 | DIMM1A_SA2   | 164 | DDR_CB<5>   | 225 | NC_DDR_225  |
| 43  | DDR_CB<1>    | 104 | NC_DDR_104   | 165 | GND         | 226 | GND         |
| 44  | GND          | 105 | GND          | 166 | DDR_DM<8>   | 227 | DDR_DM<6>   |
| 45  | DDR_DQS_N<8> | 106 | DDR_DQS_N<6> | 167 | NC_DDR_167  | 228 | NC_DDR_228  |
| 46  | DDR_DQS_P<8> | 107 | DDR_DQS_P<6> | 168 | GND         | 229 | GND         |

# Table 27. DDR2 DIMM Connector (J6D1) Pinout (Sheet 2 of 3)

| Pin | Signal Name    | Pin | Signal Name  | Pin | Signal Name | Pin | Signal Name |
|-----|----------------|-----|--------------|-----|-------------|-----|-------------|
| 47  | GND            | 108 | GND          | 169 | DDR_CB<6>   | 230 | DDR_DQ<54>  |
| 48  | DDR_CB<2>      | 109 | DDR_DQ<50>   | 170 | DDR_CB<7>   | 231 | DDR_DQ<55>  |
| 49  | DDR_CB<3>      | 110 | DDR_DQ<51>   | 171 | GND         | 232 | GND         |
| 50  | GND            | 111 | GND          | 172 | NC_DDR_172  | 233 | DDR_DQ<60>  |
| 51  | NC_DDR_51      | 112 | DDR_DQ<56>   | 173 | VBAT_RAID   | 234 | DDR_DQ<61>  |
| 52  | VBAT_RAID      | 113 | DDR_DQ<57>   | 174 | DDR_CKE1    | 235 | GND         |
| 53  | DDR_CKE0       | 114 | GND          | 175 | VBAT_RAID   | 236 | DDR_DM<7>   |
| 54  | VBAT_RAID      | 115 | DDR_DQS_N<7> | 176 | NC_DDR_176  | 237 | NC_DDR_237  |
| 55  | NC_DDR_BA2     | 116 | DDR_DQS_P<7> | 177 | NC_DDR_177  | 238 | GND         |
| 56  | NC_DDR_ERR_OUT | 117 | GND          | 178 | VBAT_RAID   | 239 | DDR_DQ<62>  |
| 57  | VBAT_RAID      | 118 | DDR_DQ<58>   | 179 | DDR_MA<12>  | 240 | DDR_DQ<63>  |
| 58  | DDR_MA<11>     | 119 | DDR_DQ<59>   | 180 | DDR_MA<9>   | 241 | GND         |
| 59  | DDR_MA<7>      | 120 | GND          | 181 | VBAT_RAID   | 242 | DDRII_SMBDA |
| 60  | VBAT_RAID      | 121 | DIMM1A_SA0   | 182 | DDR_MA<8>   | 243 | DDRII_SMBCL |
| 61  | DDR_MA<5>      | 122 | DIMM1A_SA1   | 183 | DDR_MA<6>   | 244 | P3V3        |

## Table 27. DDR2 DIMM Connector (J6D1) Pinout (Sheet 3 of 3)

# 4.14.4 SAS Flex Connector (J2B1)

Table 28 gives the pinout for the SAS Flex connector, which connects to the SAS backplane through the flex circuit cable.

Table 28.SAS Flex Connector (J2B1) Pinout

| Pin # | Signal Name           | Pin # | Signal Name |
|-------|-----------------------|-------|-------------|
| 1     | FP_FLEX_PRES_N        | 41    | GND         |
| 2     | SMB_SAS_3V3_SCL       | 42    | SAS4_RX_N   |
| 3     | SMB_IPMB_5VSB_CLK     | 43    | SAS3_TX_N   |
| 4     | SMB_SAS_3V3_SDA       | 44    | GND         |
| 5     | SMB_IPMB_5VSB_DAT     | 45    | SAS3_TX_P   |
| 6     | NC_FLEX_CONN_SPARE_12 | 46    | GND         |
| 7     | NC_FP_FC_7            | 47    | GND         |
| 8     | SGPIO_CLOCK_R         | 48    | SAS3_RX_N   |
| 9     | GND                   | 49    | GND         |
| 10    | SGPIO_LOAD_R          | 50    | SAS3_RX_P   |
| 11    | SAS7_TX_N             | 51    | SAS2_TX_N   |
| 12    | GND                   | 52    | GND         |
| 13    | SAS7_TX_P             | 53    | SAS2_TX_P   |
| 14    | GND                   | 54    | GND         |
| 15    | GND                   | 55    | GND         |
| 16    | SAS7_RX_N             | 56    | SAS2_RX_N   |
| 17    | GND                   | 57    | GND         |

| Pin # Si |                 |       |             |
|----------|-----------------|-------|-------------|
|          | ignal Name      | Pin # | Signal Name |
| 18 SA    | AS7_RX_P        | 58    | SAS2_RX_P   |
| 19 SA    | AS6_TX_P        | 59    | SAS1_TX_N   |
| 20 SC    | GPIO_DATAOUT0_R | 60    | HDD_ACT_N   |
| 21 SA    | AS6_TX_N        | 61    | SAS1_TX_P   |
| 22 GN    | ND              | 62    | GND         |
| 23 GN    | ND              | 63    | GND         |
| 24 SA    | AS6_RX_N        | 64    | SAS1_RX_N   |
| 25 GN    | ND              | 65    | GND         |
| 26 SA    | AS6_RX_P        | 66    | SAS1_RX_P   |
| 27 SA    | AS5_TX_N        | 67    | SAS0_TX_P   |
| 28 SC    | GPIO_DATAOUT1_R | 68    | HDD_FLT_N   |
| 29 SA    | AS5_TX_P        | 69    | SAS0_TX_N   |
| 30 GN    | ND              | 70    | GND         |
| 31 GN    | ND              | 71    | GND         |
| 32 SA    | AS5_RX_N        | 72    | SAS0_RX_N   |
| 33 GN    | ND              | 73    | NC_FP_FC_73 |
| 34 SA    | AS5_RX_P        | 74    | SAS0_RX_P   |
| 35 SA    | AS4_TX_P        | 75    | NC_DIFF2_P  |
| 36 NC    | C_FP_PWR_ENABLE | 76    | GND         |
| 37 SA    | AS4_TX_N        | 77    | NC_DIFF2_N  |
| 38 GI    | ND              | 78    | NC_FP_FC_78 |
| 39 GN    | ND              | 79    | GND         |
| 40 SA    | AS4_RX_P        | 80    | GND         |

# Table 28. SAS Flex Connector (J2B1) Pinout (Continued)

# 4.14.5 Serial Cable Header From Server Board (J8B1)

Table 29 gives the pinout for the Serial Cable Header connector.

## Table 29. Serial Cable Header (J8B1) Pinout

| Pin # | Signal Name |
|-------|-------------|
| 1     | EMP_DCD_L   |
| 2     | EMP_DSR_N   |
| 3     | EMP_SIN     |
| 4     | EMP_RTS_N   |
| 5     | EMP_SOUT    |
| 6     | EMP_CTS_N   |
| 7     | EMP_DTR_N   |
| 8     | NC_EMP_RI_N |
| 9     | EMP_INUSE_L |

 Table 29.
 Serial Cable Header (J8B1) Pinout (Continued)

| Pin # | Signal Name |
|-------|-------------|
| 10    | NC_5V_STBY  |
| 11    | GND         |
| 12    | NC          |

# 4.14.6 **Power Connectors**

Table 30, Table 31 and Table 31 give the pinouts for power connectors J1D2, J2D2 and J2D1 respectively.

#### Table 30. SAS Backplane Power Connector (J1D2)

| Pin # | Signal Name | Signal Name | Pin # |
|-------|-------------|-------------|-------|
| 1     | P5V         | P5V         | 7     |
| 2     | P5V         | P5V         | 8     |
| 3     | P12V        | P3V3        | 9     |
| 4     | P12V        | GND         | 10    |
| 5     | GND         | GND         | 11    |
| 6     | GND         | GND         | 12    |

#### Table 31. PDB Power Connector (J2D2) Pinout

| Pin # | Signal Name |
|-------|-------------|
| 1     | GND         |
| 2     | P5V         |
| 3     | P5V         |

#### Table 32. PDB Power Connector (J2D1) Pinout

| Pin # | Signal Name | Signal Name | Pin # |
|-------|-------------|-------------|-------|
| 1     | GND         | P12V        | 4     |
| 2     | GND         | P12V        | 5     |
| 3     | P5V         | P3V3        | 6     |

# 4.14.7 External USB/Serial (J8E1)

Table 33 gives the pinout for the External USB/Serial connector on the SFP board. The user-side pin-outs for connectors are in Section 3.3, "User-Accessible Interconnects" on page 35.

### Table 33. External USB/Serial Port Connector (J8E1) Pinout

| Pin # | Signal Name        |
|-------|--------------------|
| 1     | GND                |
| 2     | GND                |
| 3     | GND                |
| 4     | GND                |
| 5     | USB_PWR            |
| 6     | USB0_FP_CONN_N     |
| 7     | USB0_FP_CONN_P     |
| 8     | USB_GND            |
| 9     | RJ45_EMP_RTS_L     |
| 10    | RJ45_EMP_DTR_L     |
| 11    | RJ45_EMP_SOUT      |
| 12    | GND                |
| 13    | RJ45_EMP_INUSE_L   |
| 14    | RJ45_EMP_SIN       |
| 15    | RJ45_EMP_DSR_DCD_L |
| 16    | RJ45_EMP_CTS_L     |

# 4.14.8 80333 Processor UART Connector (J3B1)

Table 34 gives the connector pinouts for the UART connector.

#### Table 34. 80333 Processor UART Connector (J3B1) Pinout

| Pin # | Signal Name   |
|-------|---------------|
| 1     | BROCK_UART_TX |
| 2     | GND           |
| 3     | BROCK_UART_RX |
| 4     | P3V3          |

# 4.14.9 Fan Connectors

Table 35, Table 36, Table 37 and Table 38 give the connector pinouts for the upper fan connector, lower fan connector, CPU1 fan connector and the CPU2 fan connector respectively.

### Table 35. Upper Fan Connector (J1D1) Pinout

| Pin # | Signal Name |
|-------|-------------|
| 1     | P12V        |
| 2     | FAN4_TACH   |
| 3     | GND         |

| Table 35. | Upper Fan | Connector ( | ( <b>J1D1</b> ) | ) Pinout ( | (Continued) | ) |
|-----------|-----------|-------------|-----------------|------------|-------------|---|
|           | opper run | connector ( |                 | , i moat ( | continucu   |   |

| Pin # | Signal Name |  |
|-------|-------------|--|
| 4     | FAN_IO_PWM  |  |
| 5     | P12V        |  |
| 6     | FAN8_TACH   |  |
| 7     | GND         |  |
| 8     | FAN_IO_PWM  |  |

## Table 36. Lower Fan Connector (J1C1) Pinout

| Pin # | Signal Name |  |
|-------|-------------|--|
| 1     | P12V        |  |
| 2     | FAN3_TACH   |  |
| 3     | GND         |  |
| 4     | FAN_IO_PWM  |  |
| 5     | P12V        |  |
| 6     | FAN7_TACH   |  |
| 7 GND |             |  |
| 8     | FAN_IO_PWM  |  |

#### Table 37. CPU1 Fan Connector (J7A1) Pinout

| Pin # | Signal Name  |  |
|-------|--------------|--|
| 1     | P12V         |  |
| 2     | FAN1_TACH    |  |
| 3     | GND          |  |
| 4     | FAN_CPU2_PWM |  |

#### Table 38. CPU2 Fan Connector (J7A2) Pinout

| Pin # | Signal Name  |  |
|-------|--------------|--|
| 1     | P12V         |  |
| 2     | FAN2_TACH    |  |
| 3     | GND          |  |
| 4     | FAN_CPU2_PWM |  |

# 4.14.10 SMART eUSB SSD Interposer Board Connector

Table 39 gives the connector pinouts for the interposer board connector.

#### Table 39. Interposer Board Connector Pinout

| Pin # | Signal             |  |
|-------|--------------------|--|
| 1     | GND                |  |
| 2     | Keyed (no connect) |  |
| 3     | SYSCON_USB_P       |  |
| 4     | SYSCON_PWR         |  |
| 5     | 5 SYSCON_USB_N     |  |
| 6     | GND                |  |

# 5 SAS Backplane

This chapter describes the SAS backplane, which provides support for the SAS hard disk drives and the optional optical disk drive in the Kontron IP Network Server NSC2U.

This chapter contains the following sections:

- Overview
- SFP Board Interface
- SAS HDD Interface
- IDE CD ROM/DVD to Server Board Interface
- IDE CD ROM/DVD Drive Interface
- Power Connector Interface to Front Panel

# 5.1 Overview

The Kontron IP Network Server NSC2U system contains a single SAS backplane that provides support for six 2.5-inch SAS HDD and one slim-line CD-ROM/DVD. The backplane interfaces with the SAS Front Panel (SFP) board, which contains a SFP-2U controller that provides support for up to six standard SAS drives. The backplane board interfaces to the SFP board via a controlled impedance flex cable that contains the six SAS HDD signals, control signals, and system management SMBus signals.

The SAS interface to the HDDs is via the 29-pin SAS connector. Activity and fault LEDs are provided for each of the six HDD positions. A composite fault and activity LED signal for all six drives is sent to the SFP board to drive the front panel drive activity/fault LED.

The backplane board also provides the interface between the IDE controller on the Intel $^{\textcircled{R}}$  Server Board T5000PAL and the slim-line CD-ROM/DVD drive. The IDE interface to the server board is via a 44-pin ribbon cable.

The DC power to the backplane (12V, 5V, and 3.3V) is provided from the SFP board via a 12-pin (2x6) connector.

Figure 39 is a block diagram of the SAS backplane.





# 5.2 SFP Board Interface

An 80-pin connector and a flex circuit cable provide the interconnection from the SAS backplane to the SFP board. The flex circuit permits the interconnect using a single cable that meets the SI requirements for the SAS signals and meets the mechanical constraints for routing the cable. Table 40 gives the pinout for the 80-pin flex cable connector.

The interconnect supports up to a maximum of eight SAS channels and the drive management controller interface. For this application, only six SAS channels are used.

| Pin # | Signal Name     | Pin # | Signal Name      |
|-------|-----------------|-------|------------------|
| 1     | FP_FLEX _PRES1  | 2     | SMB_SAS_3V3_SCL  |
| 3     | IPMB_I2C_SCL    | 4     | SMB_SAS_3V3_SDA  |
| 5     | IPMB_I2C_SDA    | 6     | NC_FLEX_CONN_6   |
| 7     | NC_FLEX_CONN_7  | 8     | SGPIO_CLOCK_R    |
| 9     | GROUND          | 10    | SGPOI_LOAD_R     |
| 11    | NC_SAS7_C_TX_N  | 12    | GROUND           |
| 13    | NC_SAS7_C_TX_P  | 14    | GROUND           |
| 15    | GROUND          | 16    | NC_SAS7_C_RX_N   |
| 17    | GROUND          | 18    | NC_SAS7_C_RX_P   |
| 19    | NC_SAS6_C_TX_P  | 20    | SGPIO_DATAOUT0_R |
| 21    | NC_SAS6_C_TX_N  | 22    | GROUND           |
| 23    | GROUND          | 24    | NC_SAS6_C_RX_N   |
| 25    | GROUND          | 26    | NC_SAS6_C_RX_P   |
| 27    | SAS5_C_TX_N     | 28    | SGPIO_DATAOUT1_R |
| 29    | SAS5_C_TX_P     | 30    | GROUND           |
| 31    | GROUND          | 32    | SAS5_C_RX_N      |
| 33    | GROUND          | 34    | SAS5_C_RX_P      |
| 35    | SAS4_C_TX_P     | 36    | NC_FP_PWR_ENABLE |
| 37    | SAS4_C_TX_N     | 38    | GROUND           |
| 39    | GROUND          | 40    | SAS4_C_RX_P      |
| 41    | GROUND          | 42    | SAS4_C_RX_N      |
| 43    | SAS3_C_TX_N     | 44    | GROUND           |
| 45    | SAS3_C_TX_P     | 46    | GROUND           |
| 47    | GROUND          | 48    | SAS3_C_RX_N      |
| 49    | GROUND          | 50    | SAS3_C_RX_P      |
| 51    | SAS2_C_TX_N     | 52    | GROUND           |
| 53    | SAS2_C_TX_P     | 54    | GROUND           |
| 55    | GROUND          | 56    | SAS2_C_RX_N      |
| 57    | GROUND          | 58    | SAS2_C_RX_P      |
| 59    | SAS1_C_TX_N     | 60    | LED_HDD_ACT_R_L  |
| 61    | SAS1_C_TX_P     | 62    | GROUND           |
| 63    | GROUND          | 64    | SAS1_C_RX_N      |
| 65    | GROUND          | 66    | SAS1_C_RX_P      |
| 67    | SAS0_C_TX_P     | 68    | LED_HDD_FLT_R_L  |
| 69    | SAS0_C_TX_N     | 70    | GROUND           |
| 71    | GROUND          | 72    | SAS0_C_RX_N      |
| 73    | NC_FLEX_CONN_73 | 74    | SAS0_C_RX_P      |
| 75    | NC DIFF2 P      | 76    | GROUND           |

## Table 40. 2x40 Flex Cable Connector (J5A1) Pinout

| Pin # | Signal Name | Pin # | Signal Name     |
|-------|-------------|-------|-----------------|
| 77    | NC_DIFF2_N  | 78    | NC_FLEX_CONN_78 |
| 79    | GROUND      | 80    | FP_FLEX_PRES1   |
| TP1   | GROUND      | TP2   | GROUND          |

 Table 40.
 2x40 Flex Cable Connector (J5A1) Pinout (Continued)

# 5.3 SAS HDD Interface

The SAS HDD interface is via the 29-pin SAS connector. Connections are provided for six SAS hard disk drives. Table 41 gives the pinout for the hard drive connectors.

#### Table 41. Hard Drive Connectors (J5C2, J5C1, J5B1, J2C2, J2C1, J2B1) Pinout

| Pin # | Signal Name             | Pin # | Signal Name         |
|-------|-------------------------|-------|---------------------|
| P1    | Not Used                | SI    | Ground              |
| P2    | Not Used                | S2    | SAS#_TX_DP (# = 05) |
| P3    | Not Used                | S3    | SAS#_TX_DN (# = 05) |
| P4    | Ground                  | S4    | Ground              |
| P5    | Ground                  | S5    | SAS#_RX_DN (# = 05) |
| P6    | DRV#_PRSNT_N (# = 05)   | S6    | SAS#_RX_DP (# = 05) |
| P7    | P5V Pre-charge          | S7    | Ground              |
| P8    | P5V                     | S8    | Not Used            |
| P9    | P5V                     | S9    | Not Used            |
| P10   | Ground                  | S10   | Not Used            |
| P11   | LED_SAS#_ACT_L (# = 05) | S11   | Not Used            |
| P12   | Ground                  | S12   | Not Used            |
| P13   | P12V Pre-charge         | S13   | Not Used            |
| P14   | P12V                    | S14   | Not Used            |
| P15   | P12V                    |       |                     |
| PTH0  | Ground                  |       |                     |
| PTY1  | Ground                  |       |                     |

# 5.4 IDE CD ROM/DVD to Server Board Interface

The IDE interface to server board is via a standard 44-pin IDE connector. Signals 41 to 44 are unused in this application. Table 42 gives the pinout for the slim-line IDE optical driver connector.

 Table 42.
 2x22 Slim-Line IDE Optical Drive Connector (J6M1) Pinout

| Pin # | Signal Name     | Pin # | Signal Name     |
|-------|-----------------|-------|-----------------|
| 1     | RST_IDE_L       | 2     | GROUND          |
| 3     | RIDE_DD <150> 7 | 4     | RIDE_DD <150> 8 |
| 5     | RIDE_DD <150> 6 | 6     | RIDE_DD <150> 9 |

| Pin # | Signal Name     | Pin # | Signal Name      |
|-------|-----------------|-------|------------------|
| 7     | RIDE_DD <150> 5 | 8     | RIDE_DD <150> 10 |
| 9     | RIDE_DD <150> 4 | 10    | RIDE_DD <150> 11 |
| 11    | RIDE_DD <150> 3 | 12    | RIDE_DD <150> 12 |
| 13    | RIDE_DD <150> 2 | 14    | RIDE_DD <150> 13 |
| 15    | RIDE_DD <150> 1 | 16    | RIDE_DD <150> 14 |
| 17    | RIDE_DD <150> 0 | 18    | RIDE_DD <150> 15 |
| 19    | GROUND          | 20    | NC               |
| 21    | RIDE_DDREQ      | 22    | GROUND           |
| 23    | RIDE_DIOW_N     | 24    | GROUND           |
| 25    | RIDE_DIOR_N     | 26    | GROUND           |
| 27    | RIDE_DIORDY     | 28    | IDE_CSEL         |
| 29    | RIDE_DDACK_N    | 30    | GROUND           |
| 31    | IRQ_IDE         | 32    | RIDE_P32         |
| 33    | RIDE_DA1        | 34    | IDE_PRI_CBLSNS   |
| 35    | RIDE_DA0        | 36    | RIDE_DA2         |
| 37    | RIDE_DCS1_N     | 38    | RIDE_DCS3_N      |
| 39    | LED_IDE_L       | 40    | GROUND           |
| 41    | NC_44P_IDE_P41  | 42    | NC_44P_IDE_P42   |
| 43    | NC_44P_IDE_P43  | 44    | NC_44P_IDE_P44   |

#### Table 42. 2x22 Slim-Line IDE Optical Drive Connector (J6M1) Pinout (Continued)

# 5.5 IDE CD ROM/DVD Drive Interface

The IDE interface to the CD-ROM/DVD drive is via a standard 50-pin connector used on slim-line CD-ROM/DVD drives in laptop computers. Table 43 gives the pinout of the standard 50-pin IDE interface connector for the CD-ROM/DVD drive.

 Table 43.
 50-pin Connector to Slim-Line Optical Device (J2A1) Pinout

| Pin # | Signal Name   | Pin # | Signal Name   |
|-------|---------------|-------|---------------|
| 1     | NC_50P_IDE_B1 | 2     | NC_50P_IDE_A1 |
| 3     | GND           | 4     | NC_50P_IDE_A2 |
| 5     | RIDE _DD<8>   | 6     | RST_IDE_N     |
| 7     | RIDE _DD<9>   | 8     | RIDE_DD<7>    |
| 9     | RIDE _DD<10>  | 10    | RIDE_DD<6>    |
| 11    | RIDE_DD<11>   | 12    | RIDE_DD<5>    |
| 13    | RIDE_DD<12>   | 14    | RIDE_DD<4>    |
| 15    | RIDE_DD<13>   | 16    | RIDE_DD<3>    |
| 17    | RIDE_DD<14>   | 18    | RIDE_DD<2>    |
| 19    | RIDE_DD<15>   | 20    | RIDE_DD<1>    |
| 21    | RIDE_DDREQ    | 22    | RIDE_DD<0>    |
| 23    | RIDE_DIOR_N   | 24    | GND           |

| Pin # | Signal Name    | Pin # | Signal Name    |
|-------|----------------|-------|----------------|
| 25    | GND            | 26    | RIDE_DIOW_N    |
| 27    | RIDE_DDACK_N   | 28    | RIDE_DIORDY    |
| 29    | RIDE_P32       | 30    | IRQ_IDE        |
| 31    | IDE_PRI_CBLSNS | 32    | RIDE_DA1       |
| 33    | RIDE_DA2       | 34    | RIDE_DA0       |
| 35    | RIDE_DCS3_N    | 36    | RIDE_DCS1_N    |
| 37    | P5V            | 38    | LED_IDE_N      |
| 39    | P5V            | 40    | P5V            |
| 41    | P5V            | 42    | P5V            |
| 43    | GND            | 44    | GND            |
| 45    | GND            | 46    | GND            |
| 47    | GND            | 48    | IDE_CSEL_S     |
| 49    | NC_50P_IDE B25 | 50    | NC_50P_IDE_A25 |
| MP1   | GROUND         | MP2   | GROUND         |

#### 50-pin Connector to Slim-Line Optical Device (J2A1) Pinout (Continued) Table 43.

#### 5.6 **Power Connector Interface to Front Panel**

The backplane receives DC power through the SFP Board via a  $2\times6$  Molex Micro Fit\* connector. Table 44 give the pinout of the DC power connector.

#### Table 44. 12-pin Power Connector to Front Panel Board (J3L1) Pinout

| Pin # | Signal Name | Pin # | Signal Name |
|-------|-------------|-------|-------------|
| 1     | P5V         | 7     | P5V         |
| 2     | P5V         | 8     | P5V         |
| 3     | P12V        | 9     | P3V3        |
| 4     | P12V        | 10    | GROUND      |
| 5     | GROUND      | 11    | GROUND      |
| 6     | GROUND      | 12    | GROUND      |

# 6 PCI Riser Cards

This chapter describes the design and external interface of the PCI riser cards used in the Kontron IP Network Server NSC2U.

The system contains a riser assembly that includes two different riser cards that connect directly to the Intel<sup>®</sup> Server Board T5000PAL. One riser card facilitates the installation of full-height PCI-X\* and PCI Express\* (PCIe\*) add-in cards. The other riser card facilitates the installation of low-profile PCIe add-in cards.

Each riser card is attached to the PCI riser assembly using two keyhole features and two 6/32 inch screws. Two blue flexible handles on the riser assembly facilitate the separation of the riser cards from their corresponding server board connectors when removing the riser assembly from the chassis. See Section 2.3.2, "PCI/PCI Express Subsystem" on page 18 for more information.

Figure 40 shows the full-height PCI-X/PCIe riser card and Figure 41 shows the low-profile PCIe riser card.

Figure 40. Full-Height PCI-X/PCIe Riser Card


#### Figure 41. Low-Profile PCIe Riser Card



## 6.1 PCI-X and PCIe Add-in Card Options

The Intel<sup>®</sup> Server Board T5000PAL has two riser slots capable of supporting riser cards for 2U system configurations. The two slots are physically different and provide different capabilities.

The full-height riser slot (J4F1) implements Intel® Adaptive Slot technology and uses a 280-pin connector that meets both PCI-X and PCIe technology specifications. The full-height riser card supports the following interfaces: PCI-X, PCIe x4 and PCIe x8. Table 45 shows the supported throughput and the number of add-in cards installed for each possible configuration.

#### Table 45. Full-Height Riser Card Configurations and Throughput

| Configuration                   | Bottom Slot | Middle Slot   | Top Slot |  |  |
|---------------------------------|-------------|---------------|----------|--|--|
|                                 | PCI-X †     | -             | -        |  |  |
| 1 add-in card                   | -           | x8 or x4 PCIe | -        |  |  |
|                                 | -           | -             | x4 PCIe  |  |  |
|                                 | PCI-X †     | x8 or x4 PCIe | -        |  |  |
| 2 add-in cards                  | PCI-X †     | -             | x4 PCIe  |  |  |
|                                 | -           | x4 PCIe       | x4 PCIe  |  |  |
| 3 add-in cards                  | PCI-X †     | x4 PCIe       | x4 PCIe  |  |  |
| Note: † Up to 133 MHz bus speed |             |               |          |  |  |

The low-profile riser slot (J5B1) uses a 98-pin connector. It is capable of supporting up to two low-profile PCIe add-in cards. The low-profile riser only supports x4 PCIe interfaces. Table 46 shows the supported throughput and the number of add-in cards installed for each possible configuration.

#### Table 46. Low-Profile Riser Card Configurations and Throughput

| Configuration                                                                                                                                                  | Lower Slot | Upper Slot |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--|--|
| 1 add-in card                                                                                                                                                  | x4 PCIe †  |            |  |  |
|                                                                                                                                                                |            | x4 PCIe †  |  |  |
| 2 add-in cards                                                                                                                                                 | x4 PCIe †  | x4 PCIe †  |  |  |
| $^\dagger$ The riser card's PCIe slots can physically accommodate boards with x1, x4 or x8 connectors, but the link interface to each slot is only x4 maximum. |            |            |  |  |

Note:

There are no population rules for installing a single low-profile add-in card in the 2U low-profile riser card; a single add-in card can be installed in either PCIe slot.

### 6.2 PCI Express Riser Card Mechanical Specifications

Figure 42 shows the mechanical specification of the low-profile passive PCI Express riser card and Figure 43 shows the mechanical specification of the full-height PCI Express riser card.

#### Figure 42. Low-Profile Passive PCIe Riser Card Mechanical Specification





#### Figure 43. Full-Height PCI-X/PCIe Riser Card Mechanical Specification

# 7 Power Subsystem

This chapter defines the features and functionality of the switching power subsystem of the Kontron IP Network Server NSC2U. The power subsystem can use either AC-input or DC-input power supply modules. The subsystem comprises one or two PSUs and a Power Distribution Board (PDB). If two PSUs are used, the system can operate in redundant mode.

The information contained in this chapter is organized into the following sections:

- Features
- Power Supply Cage
- Power Supply Module Characteristics
- AC-input Power Supply Module
- DC-input Power Supply Module

### 7.1 Features

Power subsystem features include:

- support for AC-input and DC-input power supply modules
- 600W power module output capability in full AC or DC input voltage range
- 580W subsystem total output capability in full input voltage range
- power good indication LEDs
- predictive failure warning
- internal cooling fans with multi-speed capability
- remote sense of 3.3V, 5V, and 12V DC outputs (on the PDB)
- brown-out protection and recovery
- built-in load sharing capability
- built-in overloading protection capability
- onboard field replaceable unit (FRU) information
- I<sup>2</sup>C interface for server management functions
- integral handle for insertion/extraction

### 7.2 Power Supply Cage

The power supply cage of the IP Network Server NSC2U can support a single 600W SSI Thin Power Supply (TPS) module for a 1+0 non-redundant configuration or two TPS modules for a 1+1 redundant configuration that supports hot swap.

The power cage provides mating connectors for two power supply modules and a power distribution board (PDB) that contains DC-to-DC converters for the 5V and 3.3V supply rails and connectors to distribute the rails to the T5000PAL server board and SAS front panel (SFP) board.

### 7.2.1 Power Supply Cage Mechanical Specification

The IP Network Server NSC2U can support up to two 600W PSUs in a 1+1 configuration or a 1+0 configuration. A mechanical drawing of the power supply cage is shown in Figure 44.





### 7.2.2 Power Supply Cage System Interface

The Power Distribution Board (PDB) in the power supply cage connects to the server board and the front panel board via captive wire harnesses. All wiring uses listed or recognized component appliance wiring material (AVLV2), VW-1 flame rating, rated 105°C minimum, 300 Vdc minimum. Table 47 gives the length of each wiring harness and Figure 45 gives wiring harness details.

#### Table 47. Power Supply Cage Wiring Harness Cable Lengths

| From                      | To<br>Connector | No of<br>Pins | Length<br>(mm) | Description                  |
|---------------------------|-----------------|---------------|----------------|------------------------------|
| Backplane cover exit hole | P1              | 2x12          | 90, turn 90°   | Server Board Power Connector |
|                           | P2              | 2x4           | 184            | Processor Power Connector    |
|                           | Р3              | 1x5           | 101            | Power Signal Connector       |
|                           | P4              | 1x3           | 406            | SFP Power Connector          |
|                           | Р5              | 2x3           | 355            | SFP Power Connector          |



#### Figure 45. Power Supply Cage Output Wire Harness Detail

### 7.2.3 P1 Server Board Power Connector

A 24-pin Molex\* 39-01-2245 (or equivalent) connector and harness from the power supply cage provides the server board (J3K3) with the required voltages and interface signals. Table 48 shows the pinout.

| Pin     | Signal                            | Wire Color (18 AWG)                | Pin   | Signal   | Wire Color (18 AWG) |
|---------|-----------------------------------|------------------------------------|-------|----------|---------------------|
| 1       | +3.3 VDC                          | Orange                             | 13    | +3.3 VDC | Orange              |
| 2       | +3.3 VDC                          | Orange                             | 14    | -12 VDC  | Blue                |
| 2+      | COM (GND)                         | Black                              | 15    | 15       | Black               |
| 51      | СОМ                               | Black (24 AWG)                     | 15    | 2014     |                     |
| 4++     | 5 VDC                             | Red                                | 16    | PS ON#   | Groop               |
| 411     | 5V RS                             | Red (24 AWG)                       | 10    | F3_0N#   | Green               |
| 5       | СОМ                               | Black                              | 17    | СОМ      |                     |
| 6       | +5 VDC                            | Red                                | 18    | СОМ      | Black               |
| 7+      | СОМ                               | Black                              | 10    | COM      | Black               |
|         | СОМ                               | Black (24 AWG)                     | 19    | 2014     |                     |
| 8       | PWR OK                            | Gray                               | 20    | Reserved | NC                  |
| Q+++    | 5VSB                              | Purple                             | 21    |          | Red                 |
| 5111    | 5VSB                              | Purple (24 AWG)                    | ~ ~ 1 | 15 000   |                     |
| 10      | +12 V3                            | Yellow/Blue Stripe                 | 22    | +5 VDC   | Red                 |
| 11      | +12 V3                            | Yellow/Blue Stripe                 | 23    | +5 VDC   | Red                 |
| 12      | +3.3 VDC                          | Orange                             | 24    | СОМ      | Black               |
| †<br>†† | COM wire double<br>5V Remote Sens | e crimped<br>e wire double crimped |       |          |                     |

#### Table 48. 24-pin Server Board Power Connector Pinout

5VSB wire double crimped +++

#### 7.2.4 **P2 Processor Power Connector**

An 8-pin Molex 39-01-2085 (or equivalent) connector and harness from the power supply cage provides the server board (J3K4) with the required +12V power for the processors. Table 49 shows the pinout.

Table 49. **P2 Processor Power Connector Pinout** 

| Pin | Signal | Wire Color (18 AWG) | Pin | Signal | Wire Color (18 AWG) |
|-----|--------|---------------------|-----|--------|---------------------|
| 1   | СОМ    | Black               | 5   | +12 V1 | Yellow/Black Stripe |
| 2   | СОМ    | Black               | 6   | +12 V1 | Yellow/Black Stripe |
| 3   | СОМ    | Black               | 7   | +12 V2 | Yellow/White Stripe |
| 4   | СОМ    | Black               | 8   | +12 V2 | Yellow/White Stripe |

#### 7.2.5 **P3 Power Signal Cable**

A 5-wire cable with a Molex 50-57-9705 (or equivalent) female housing connector is used to direct power management signals to the server board (J3K1). Table 50 shows the pinout.

#### Table 50. P3 Power Signal Cable Pinout

| Pin   | Signal                                                                                                        | 24 AWG Wire Color   | Description                                                                              |
|-------|---------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------|
| 1     | SMBus Clock (SCL)                                                                                             | White/Green Stripe  | Serial Clock                                                                             |
| 2     | SMBus Data (SDL)                                                                                              | White/Yellow Stripe | Serial Data; information from the power supply                                           |
| 3     | SMBAlert#                                                                                                     | White               | Indicates power supply is operating beyond its limits<br>and has failed or may fail soon |
| 4     | СОМ                                                                                                           | Black               | Return remote sense                                                                      |
| 5     | 3.3RS                                                                                                         | Orange/White Stripe | 3.3V sense                                                                               |
| Note: | If the server signal connector is unplugged, the PS/PDB-combo does not shut down or go into an OVP condition. |                     |                                                                                          |

### 7.2.6 P4 SFP Board Power Connector

A 3-wire cable with a Molex Mini-Fit Jr.\* PN# 39-01-4031 (or equivalent) connector is used to provide power to the SAS Front Panel (SFP) board. Table 51 shows the pinout.

#### Table 51. P4 SFP Board Power Connector Pinout

| Pin | Signal | 22 AWG Wire Color |
|-----|--------|-------------------|
| 1   | СОМ    | Black             |
| 2   | 5V     | Red               |
| 3   | 5V     | Red               |

### 7.2.7 P5 SFP Board Power Connector

A 6-wire cable with a Molex Mini-Fit Jr. PN# 39-01-2065 connector is used to provide additional power to the SFP board.

#### Table 52.P5 SFP Board Power Connector Pinout

| Pin | Signal | 18 AWG Wire Color |
|-----|--------|-------------------|
| 1   | СОМ    | Black             |
| 2   | СОМ    | Black             |
| 3   | 5V     | Red               |
| 4   | 12V4   | Yellow            |
| 5   | 12V4   | Yellow            |
| 6   | 3.3V   | Orange            |

### 7.2.8 Output Current Requirements

Table 53 gives the +12V output power requirements from the Power Distribution Board (PDB) with one or two 600W PSUs plugged into the input of the PDB.

#### Table 53.+12V Outputs Load Ratings

|                                                                              | +12V1               | +12V2               | +12V3               | +12V4               |  |
|------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|--|
| Maximum Load                                                                 | 16A                 | 16A                 | 16A                 | 16A                 |  |
| Minimum Static/Dynamic Load                                                  | 0A                  | 0A                  | 0A                  | 0A                  |  |
| Peak Load (12 seconds)                                                       | 18A                 | 18A                 | 18A                 | 18A                 |  |
| Maximum Output Power                                                         | 12V x 16A<br>= 192W |  |
| Notes:<br>1. The combined total power limit for all outputs is 580W maximum. |                     |                     |                     |                     |  |

2. +12V1/2/3/4 combined output limit = 46.2A / 63A peak maximum.

Table 54 gives the power and current ratings of the two DC/DC converters located on the PDB, each powered from the +12V rail. The converters meet both static and dynamic voltage regulation requirements for the minimum and maximum loading conditions.

#### Table 54. DC/DC Converters Load Ratings

|                                                    | +12 VDC Input DC/DC Converters |                 |  |  |
|----------------------------------------------------|--------------------------------|-----------------|--|--|
|                                                    | +3.3V Converter                | +5V Converter   |  |  |
| Maximum Load                                       | 20A                            | 26A             |  |  |
| Minimum Static/Dynamic Load                        | 0.5A                           | 0.5A            |  |  |
| Maximum Output Power                               | 20A x 3.3V = 66W               | 26A x 5V = 130W |  |  |
| Note: 3.3V /5V combined power limit: 150W maximum. |                                |                 |  |  |

### 7.2.9 Hot Swapping Power Modules

Hot swapping a power supply module is the process of extracting and inserting a PSU from an operating system. The IP Network Server NSC2U power subsystem is capable of supporting hot swapping of power supply modules in a 1+1 configuration.

### 7.2.10 Intelligent Cage Functions

The PSU and Power Distribution Board (PDB) combination provides a monitoring interface to the system over a server management bus. The device is compatible with both SMBus 2.0 "high power" and I<sup>2</sup>C Vdd-based power and drive. This bus may operate inside the PSU and PDB at 5V (powered from stand-by voltage), however, looking from the system server management into the PSU and PDB combination, it is compatible with the 3.3V bus. A bi-directional I<sup>2</sup>C voltage translator is employed on the PDB. The SMBus pull-ups are located on the server board.

The PDB's I<sup>2</sup>C bus has a dual function:

- provide PSU and PDB monitoring features
- conveys the stored FRU data in the PSU and PDB EEPROM

### 7.2.11 FRU Data

The power supply cage contains a 2 Kbyte EEPROM device that contains FRU data for the cage according to the IPMI specification. Each separate output is given a different number for identification purposes.

### 7.3 **Power Supply Module Characteristics**

The IP Network Server NSC2U can be configured with either AC-input or DC-input power supply modules, which have the same physical dimensions and share many of the same characteristics and specifications. Those common characteristics are described in this section before presenting specific details about the two different types of power supply module.

### 7.3.1 Power Supply Module to Cage Interconnect

The power supply provides a pluggable terminal block, which mates to a connector located at the PDB. This is a blind mating type connector that connects the power supply's output voltages and signals.

The power supply must be provided with a reliable protective earth ground, and all secondary circuits must be connected to that protective earth ground. Resistance of the ground returns to chassis must not exceed 1.0 m $\Omega$ . This path may be used to carry DC current.

Figure 46 shows the outline of the mating connector. Table 55 provides pinout information.

#### Figure 46. Power Supply Module Output Connector



#### Table 55. Power Supply Module Output Connector Pinout

| Signal Pins                   |         |         |          |           |  |  |
|-------------------------------|---------|---------|----------|-----------|--|--|
| Position                      | 1       | 2       | 3        | 4         |  |  |
| D                             | +12VRDS | -12V    | +5VSB    | 15VCC     |  |  |
| С                             | PWOK    | RS RTN  | +5VSB    | A0        |  |  |
| В                             | +12VLS  | RESERVE | PS KILL† | A1        |  |  |
| A                             | PS ON#  | SDA     | SLC      | PS ALERT# |  |  |
| † Signal pin B3 is shortened. |         |         |          |           |  |  |

#### Table 55. Power Supply Module Output Connector Pinout (Continued)

| Power Blades                  |      |     |     |  |  |  |
|-------------------------------|------|-----|-----|--|--|--|
| P1 P2 P3 P4                   |      |     |     |  |  |  |
| +12V                          | +12V | RTN | RTN |  |  |  |
| † Signal pin B3 is shortened. |      |     |     |  |  |  |

### 7.3.2 Output Current Ratings

Each PSU provides three outputs: +12V, +5V standby, and -12V voltages. (The main +5V and 3.3V rails are generated by DC-to-DC converters on the PDB.) The combined maximum output power of all outputs is 600W (680W peak). Each output has a maximum and minimum current rating as shown in Table 56.

#### Table 56.PSU Load Ratings

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +12V                                             | +5V Standby                              | -12V                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------|
| Maximum Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49.0A                                            | 2.0A                                     | 0.5A                                 |
| Minimum Dynamic Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5A                                             | 0.1A                                     | 0.0A                                 |
| Minimum Static Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.5A                                             | 0.1A                                     | 0.0A                                 |
| Peak Load (12 seconds minimum)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 56.0A                                            | 2.5A                                     | N/A                                  |
| Maximum Output Power (continuous), see note 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 49A x 12<br>= 588W max.                          | 2A x 5V<br>= 10W max.                    | 0.5A x 12V<br>= 6W max.              |
| <b>Peak Output Power</b> (for 12 seconds minimum), see note 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56A x 12V<br>= 672W peak                         | 2.5A x 5V<br>= 12.5W peak                | N/A                                  |
| Notes:           1.         At maximum load, the output voltages are 11.52V, so the actual maximum power will be actual will be actual maximum power will be actual will | e allowed to sag to -4<br>Il then be 11.52V x 49 | %. For the 12V out<br>A = 564.5W. For th | out, this results in<br>e 5V standby |

output, the maximum load voltage can sag to 4.80V so the actual maximum power is 4.80V x 2A = 9.6W. The total maximum continuous power is therefore 564.5 + 9.6 = 571.4W. At peak load, the output voltages are allowed to sag to -4%. For the 12V output, this results in

2. At peak load, the output voltages are allowed to sag to -4%. For the 12V output, this results in 11.52V, so the actual maximum power will then be 11.52V x 56A = 645W. For the 5V standby output, the maximum load voltage can sag to 4.80V so the actual maximum power is 4.80V x 2.5A = 12W. The total maximum continuous power is therefore 645 + 12 = 657W.

### 7.3.3 Air Flow

Each power supply module incorporates a single 40 mm fan for self-cooling, which also contributes to overall system cooling. The PSU fan provides no less than 10 CFM airflow through the power supply when installed in the system and operating at maximum fan speed. The cooling air enters the power module from the PDB side (pre-heated air from the system). The fan's variable speed is based on output load and ambient temperature. Under standby mode, the fans run at minimum RPM.

### 7.3.4 Thermal Protection

Each PSU incorporates thermal protection that causes a shutdown if airflow through the PSU is insufficient. Thermal protection activates shutdown before the temperature of any PSU component passes the maximum rated temperature. This shutdown takes place prior to over-temperature induced damage to the PSU.

### 7.4 AC-input Power Supply Module

The AC-input power system supports one 600W SSI TPS (Thin Power Supply) module for a non-redundant configuration, or two in a 1+1 redundant configuration.

### 7.4.1 AC-Input PSU Mechanical Specification

Figure 47 shows the mechanical specification of the AC-input power supply module.

#### Figure 47. AC-Input Power Supply Module Mechanical Specification



### 7.4.2 AC-Input PSU Power Input Connector

Figure 48 shows the power input connector on the AC-input PSU.

#### Figure 48. AC-Input Power Supply Module Input Connector



### 7.4.3 AC-Input PSU LED Indicators

The AC-input PSU provides a single, external, bi-color LED to indicate the status of the power supply.

When AC is applied to the PSU and standby voltages are available, the LED blinks green.

The LED is solid green when all the power outputs are available.

The LED is solid amber when the PSU has failed or has shut down due to over-current or over-temperature.

Table 57 summarizes the AC-Input PSU LED indications.

#### Table 57. AC-Input PSU LED Indicators

| Bi-color LED<br>Indication | Power Supply Condition                                                                                                                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFF                        | No AC input power to any power supply                                                                                                                                                                   |
| Amber                      | No AC power input to this PSU only (for 1+1 configuration)<br>or<br>Power supply <b>critical event</b> causing a shutdown, such as:<br>failure, fuse blown (1+1 only), OCP (12V), OVP (12V), fan failed |
| 1 Hz Blinking Amber        | Power supply <b>warning event</b> , but the power supply <b>continues to operate</b> , such as: high temp, high power/high current, slow fan                                                            |
| 1 Hz Blinking Green        | AC input present, only 5 Vsb on (volts standby on, PS switched off)                                                                                                                                     |
| Green                      | Output on and OK                                                                                                                                                                                        |

### 7.5 DC-input Power Supply Module

### 7.5.1 DC-Input PSU Mechanical Specification

Figure 49 shows the mechanical specification of the DC-input power supply module.

### Figure 49. DC-Input Power Supply Module Mechanical Specification



### 7.5.2 DC-Input PSU Power Input Connector

Figure 50 shows the power input connector on the DC-input PSU.

#### Figure 50. DC-Input Power Supply Module Input Connector



### 7.5.3 DC-Input PSU LED Indicators

The DC-input PSU provides a single, external, bi-color LED to indicate the status of the power supply.

When DC is applied to the PSU and standby voltages are available, the LED blinks green.

The LED is solid green when all the power outputs are available.

The LED is solid amber when the PSU has failed or shut down due to over-current, or over-temperature.

Table 58 summarizes the DC-Input PSU LED indications.

#### Table 58. DC-Input PSU LED Indicators

| Bi-color LED<br>Indication | Power Supply Condition                                                                                                                                                                                  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OFF                        | No DC input power to any power supply                                                                                                                                                                   |
| Amber                      | No DC power input to this PSU only (for 1+1 configuration)<br>or<br>Power supply <b>critical event</b> causing a shutdown, such as:<br>failure, fuse blown (1+1 only), OCP (12V), OVP (12V), fan failed |
| 1 Hz Blinking Amber        | Power supply <b>warning event</b> , where the power supply <b>continues to operate</b> , such as: high temp, high power/high current, slow fan                                                          |
| 1 Hz Blinking Green        | DC input present, only 5 Vsb on (volts standby on, PS switched off)                                                                                                                                     |
| Green                      | Output on and OK                                                                                                                                                                                        |

# 8 Regulatory Specifications

The Kontron IP Network Server NSC2U system meets the specifications and regulations for safety and EMC defined in this chapter.

## 8.1 Safety Compliance

| USA/Canada    | UL 60950-1, 1 <sup>st</sup> Edition/CSA 22.2                                               |
|---------------|--------------------------------------------------------------------------------------------|
| Europe        | Low Voltage Directive, 73/23/EEC<br>TUV/GS to EN60950-1, 1 <sup>st</sup> Edition           |
| International | CB Certificate and Report to IEC60950-1, $1^{St}$ Edition and all international deviations |

## 8.2 Electromagnetic Compatibility

| USA                   | FCC 47 CFR Parts 2 and 15, Verified Class A Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Canada                | IC ICES-003 Class A Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Europe                | EMC Directive, 89/336/EEC<br>EN55022, Class A Limit, Radiated & Conducted Emissions<br>EN55024 Immunity Characteristics for ITE<br>EN61000-4-2 ESD Immunity (level 2 contact discharge, level 3 air discharge)<br>EN61000-4-3 Radiated Immunity (level 2)<br>EN61000-4-4 Electrical Fast Transient (level 2)<br>EN61000-4-5 Surge<br>EN61000-4-6 Conducted RF<br>EN61000-4-8 Power Frequency Magnetic Fields<br>EN61000-4-11 Voltage Fluctuations and Short Interrupts<br>EN61000-3-2 Harmonic Currents<br>EN61000-3-3 Voltage Flicker |
| Australia/New Zealand | EN55022, Class A Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Japan                 | VCCI Class A ITE (CISPR 22, Class A Limit)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Taiwan                | BSMI Approval, CNS 13438, Class A and CNS13436 Safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Korea                 | RRL Approval, Class A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| China                 | CCC Approval, Class A (EMC and Safety)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Russia                | Gost Approval (EMC and safety)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| International         | CISPR 22, Class A Limit, CISPR 24 Immunity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

### 8.3 CE Mark

The CE marking on this product indicates that it is in compliance with the European Union's EMC Directive 89/336/EEC, and Low Voltage Directive 73/23/EEC.

# Appendix A: Glossary

This appendix contains important acronyms and terms used in the preceding chapters.

| Term   | Definition                                               |
|--------|----------------------------------------------------------|
| A, Amp | Ampere                                                   |
| AC     | Alternating current                                      |
| ATA    | Advanced Technology Attachment                           |
| AWG    | American wire gauge                                      |
| BIOS   | Basic input/output system                                |
| BMC    | Baseboard management controller                          |
| Bridge | Circuitry that connects one computer bus to another      |
| Byte   | 8-bit quantity                                           |
| С      | Centigrade                                               |
| CE     | Community European                                       |
| CFM    | Cubic feet per minute                                    |
| CISPR  | International Special Committee on Radio Interference    |
| CSA    | Canadian Standards Organization                          |
| CTS    | Clear to send                                            |
| D2D    | DC-to-DC                                                 |
| DC     | Direct current                                           |
| DDR    | Dual Data Rate                                           |
| DIMM   | Dual inline memory module                                |
| DOSA   | Distributed-power Open Standards Alliance                |
| DPC    | Direct Platform Control                                  |
| DRAM   | Dynamic random access memory                             |
| DSR    | Data set ready                                           |
| DTR    | Data terminal ready                                      |
| ECC    | Error checking and correcting                            |
| EEPROM | Electrically erasable programmable read-only memory      |
| EMC    | Electromagnetic compatibility                            |
| EMP    | Emergency management port                                |
| EN     | European Standard (Norme Européenne or Europäische Norm) |
| ESD    | Electrostatic discharge                                  |
| F      | Fahrenheit                                               |
| FBD    | Fully Buffered DRAM                                      |
| FCC    | Federal Communications Commission                        |

| Term             | Definition                                                  |
|------------------|-------------------------------------------------------------|
| Flash ROM        | EEPROM                                                      |
| FRB              | Fault resilient booting                                     |
| FRU              | Field replaceable unit                                      |
| G                | Acceleration in gravity units, $1G = 9.80665 \text{ m/s}^2$ |
| GbE              | Gigabit Ethernet                                            |
| GB, Gbyte        | Gigabyte – 1024 Mbytes                                      |
| GCM              |                                                             |
| GND              | Ground (Earth)                                              |
| GPIO             | General purpose input/output                                |
| Grms             | Root mean square of acceleration in gravity units           |
| HDD              | Hard disk drive                                             |
| HSC              | Hot-swap controller                                         |
| Hz               | Hertz – 1 cycle/second                                      |
| I/O              | Input/output                                                |
| I <sup>2</sup> C | Inter-integrated circuit bus                                |
| IBBU             | Intelligent Battery Backup Unit                             |
| ICMB             | Intelligent Chassis Management Bus                          |
| IDE              | Integrated drive electronics                                |
| IPMI             | Intelligent Platform Management Initiative                  |
| ITE              | Information technology equipment                            |
| Kbyte            | Kilobyte – 1024 bytes                                       |
| kV               | Kilovolt – 1,000 volts                                      |
| LAN              | Local area network                                          |
| LED              | Light-emitting diode                                        |
| mA               | Milliampere                                                 |
| Mbyte            | Megabyte – 1024 Kbytes                                      |
| Mbps             | Millions of bits per second                                 |
| mm               | Millimeter                                                  |
| MPS              | Multiprocessor specification                                |
| mΩ               | Milliohm                                                    |
| NIC              | Network interface card                                      |
| NMI              | Nonmaskable interrupt                                       |
| OEM              | Original equipment manufacturer                             |
| OS               | Operating system                                            |
| OTP              | Over-temperature protection                                 |
| OVP              | Over-voltage protection                                     |
| PCI              | Peripheral component interconnect                           |
| PCIe             | PCI Express peripheral component interconnect               |
| PLD              | Programmable Logic Device                                   |
| PnP              | Plug and play                                               |
| POST             | Power-on Self Test                                          |

| Term   | Definition                                                                                 |
|--------|--------------------------------------------------------------------------------------------|
| PSU    | Power supply unit                                                                          |
| PWM    | Pulse width modulation                                                                     |
| RAID   | Redundant Array of Independent Drives                                                      |
| RPM    | Revolutions per minute                                                                     |
| RTS    | Request to send                                                                            |
| SAS    | Serial Attached SCSI                                                                       |
| SCL    | Serial clock                                                                               |
| SCSI   | Small Computer Systems Interface                                                           |
| SDR    | Sensor data records                                                                        |
| SDRAM  | Synchronous dynamic RAM                                                                    |
| SEL    | System event log                                                                           |
| SFP    | SAS Front Panel                                                                            |
| SGRAM  | Synchronous graphics RAM                                                                   |
| SM     | Server management                                                                          |
| SMBIOS | System management BIOS                                                                     |
| SMBus  | Subset of I2C bus/protocol (developed by Intel)                                            |
| SSI    | Server system infrastructure                                                               |
| τυν    | Technischer Uberwachungs-Verein (A safety testing laboratory with headquarters in Germany) |
| UART   | Universal Asynchronous Receiver/Transmitter                                                |
| UL     | Underwriters Laboratories, Inc.                                                            |
| USB    | Universal Serial Bus                                                                       |
| V      | Volt                                                                                       |
| VA     | Volt-amps (volts multiplied by amps)                                                       |
| Vac    | Volts alternating current                                                                  |
| VCCI   | Voluntary Control Council for Interference                                                 |
| Vdc    | Volts direct current                                                                       |
| VGA    | Video graphics array                                                                       |
| VRM    | Voltage regulator module                                                                   |
| VSB    | Voltage standby                                                                            |
| W      | Watt                                                                                       |
| Ω      | Ohm                                                                                        |

NSC2U Server—A